Total
12912 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-48986 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/gup: fix gup_pud_range() for dax For dax pud, pud_huge() returns true on x86. So the function works as long as hugetlb is configured. However, dax doesn't depend on hugetlb. Commit 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax") fixed devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as well. This fixes the below kernel panic: general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP < snip > Call Trace: <TASK> get_user_pages_fast+0x1f/0x40 iov_iter_get_pages+0xc6/0x3b0 ? mempool_alloc+0x5d/0x170 bio_iov_iter_get_pages+0x82/0x4e0 ? bvec_alloc+0x91/0xc0 ? bio_alloc_bioset+0x19a/0x2a0 blkdev_direct_IO+0x282/0x480 ? __io_complete_rw_common+0xc0/0xc0 ? filemap_range_has_page+0x82/0xc0 generic_file_direct_write+0x9d/0x1a0 ? inode_update_time+0x24/0x30 __generic_file_write_iter+0xbd/0x1e0 blkdev_write_iter+0xb4/0x150 ? io_import_iovec+0x8d/0x340 io_write+0xf9/0x300 io_issue_sqe+0x3c3/0x1d30 ? sysvec_reschedule_ipi+0x6c/0x80 __io_queue_sqe+0x33/0x240 ? fget+0x76/0xa0 io_submit_sqes+0xe6a/0x18d0 ? __fget_light+0xd1/0x100 __x64_sys_io_uring_enter+0x199/0x880 ? __context_tracking_enter+0x1f/0x70 ? irqentry_exit_to_user_mode+0x24/0x30 ? irqentry_exit+0x1d/0x30 ? __context_tracking_exit+0xe/0x70 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x61/0xcb RIP: 0033:0x7fc97c11a7be < snip > </TASK> ---[ end trace 48b2e0e67debcaeb ]--- RIP: 0010:internal_get_user_pages_fast+0x340/0x990 < snip > Kernel panic - not syncing: Fatal exception Kernel Offset: disabled | ||||
| CVE-2021-47136 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: zero-initialize tc skb extension on allocation Function skb_ext_add() doesn't initialize created skb extension with any value and leaves it up to the user. However, since extension of type TC_SKB_EXT originally contained only single value tc_skb_ext->chain its users used to just assign the chain value without setting whole extension memory to zero first. This assumption changed when TC_SKB_EXT extension was extended with additional fields but not all users were updated to initialize the new fields which leads to use of uninitialized memory afterwards. UBSAN log: [ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28 [ 778.301495] load of value 107 is not a valid value for type '_Bool' [ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2 [ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 778.307901] Call Trace: [ 778.308680] <IRQ> [ 778.309358] dump_stack+0xbb/0x107 [ 778.310307] ubsan_epilogue+0x5/0x40 [ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48 [ 778.312454] ? memset+0x20/0x40 [ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch] [ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch] [ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch] [ 778.317188] ? create_prof_cpu_mask+0x20/0x20 [ 778.318220] ? arch_stack_walk+0x82/0xf0 [ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb [ 778.320399] ? stack_trace_save+0x91/0xc0 [ 778.321362] ? stack_trace_consume_entry+0x160/0x160 [ 778.322517] ? lock_release+0x52e/0x760 [ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch] [ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch] [ 778.325950] __netif_receive_skb_core+0x771/0x2db0 [ 778.327067] ? lock_downgrade+0x6e0/0x6f0 [ 778.328021] ? lock_acquire+0x565/0x720 [ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0 [ 778.329902] ? inet_gro_receive+0x2a7/0x10a0 [ 778.330914] ? lock_downgrade+0x6f0/0x6f0 [ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0 [ 778.332876] ? lock_release+0x52e/0x760 [ 778.333808] ? dev_gro_receive+0xcc8/0x2380 [ 778.334810] ? lock_downgrade+0x6f0/0x6f0 [ 778.335769] __netif_receive_skb_list_core+0x295/0x820 [ 778.336955] ? process_backlog+0x780/0x780 [ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core] [ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0 [ 778.341033] ? kvm_clock_get_cycles+0x14/0x20 [ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0 [ 778.343288] ? __kasan_kmalloc+0x7a/0x90 [ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core] [ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core] [ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820 [ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core] [ 778.349688] ? napi_gro_flush+0x26c/0x3c0 [ 778.350641] napi_complete_done+0x188/0x6b0 [ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core] [ 778.352853] __napi_poll+0x9f/0x510 [ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core] [ 778.355158] net_rx_action+0x34c/0xa40 [ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0 [ 778.357083] ? sched_clock_cpu+0x18/0x190 [ 778.358041] ? __common_interrupt+0x8e/0x1a0 [ 778.359045] __do_softirq+0x1ce/0x984 [ 778.359938] __irq_exit_rcu+0x137/0x1d0 [ 778.360865] irq_exit_rcu+0xa/0x20 [ 778.361708] common_interrupt+0x80/0xa0 [ 778.362640] </IRQ> [ 778.363212] asm_common_interrupt+0x1e/0x40 [ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10 [ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00 [ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246 [ 778.370570] RAX ---truncated--- | ||||
| CVE-2021-47124 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io_uring: fix link timeout refs WARNING: CPU: 0 PID: 10242 at lib/refcount.c:28 refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28 RIP: 0010:refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28 Call Trace: __refcount_sub_and_test include/linux/refcount.h:283 [inline] __refcount_dec_and_test include/linux/refcount.h:315 [inline] refcount_dec_and_test include/linux/refcount.h:333 [inline] io_put_req fs/io_uring.c:2140 [inline] io_queue_linked_timeout fs/io_uring.c:6300 [inline] __io_queue_sqe+0xbef/0xec0 fs/io_uring.c:6354 io_submit_sqe fs/io_uring.c:6534 [inline] io_submit_sqes+0x2bbd/0x7c50 fs/io_uring.c:6660 __do_sys_io_uring_enter fs/io_uring.c:9240 [inline] __se_sys_io_uring_enter+0x256/0x1d60 fs/io_uring.c:9182 io_link_timeout_fn() should put only one reference of the linked timeout request, however in case of racing with the master request's completion first io_req_complete() puts one and then io_put_req_deferred() is called. | ||||
| CVE-2021-47001 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: xprtrdma: Fix cwnd update ordering After a reconnect, the reply handler is opening the cwnd (and thus enabling more RPC Calls to be sent) /before/ rpcrdma_post_recvs() can post enough Receive WRs to receive their replies. This causes an RNR and the new connection is lost immediately. The race is most clearly exposed when KASAN and disconnect injection are enabled. This slows down rpcrdma_rep_create() enough to allow the send side to post a bunch of RPC Calls before the Receive completion handler can invoke ib_post_recv(). | ||||
| CVE-2021-46990 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix crashes when toggling entry flush barrier The entry flush mitigation can be enabled/disabled at runtime via a debugfs file (entry_flush), which causes the kernel to patch itself to enable/disable the relevant mitigations. However depending on which mitigation we're using, it may not be safe to do that patching while other CPUs are active. For example the following crash: sleeper[15639]: segfault (11) at c000000000004c20 nip c000000000004c20 lr c000000000004c20 Shows that we returned to userspace with a corrupted LR that points into the kernel, due to executing the partially patched call to the fallback entry flush (ie. we missed the LR restore). Fix it by doing the patching under stop machine. The CPUs that aren't doing the patching will be spinning in the core of the stop machine logic. That is currently sufficient for our purposes, because none of the patching we do is to that code or anywhere in the vicinity. | ||||
| CVE-2021-46974 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Fix masking negation logic upon negative dst register The negation logic for the case where the off_reg is sitting in the dst register is not correct given then we cannot just invert the add to a sub or vice versa. As a fix, perform the final bitwise and-op unconditionally into AX from the off_reg, then move the pointer from the src to dst and finally use AX as the source for the original pointer arithmetic operation such that the inversion yields a correct result. The single non-AX mov in between is possible given constant blinding is retaining it as it's not an immediate based operation. | ||||
| CVE-2024-47664 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: spi: hisi-kunpeng: Add verification for the max_frequency provided by the firmware If the value of max_speed_hz is 0, it may cause a division by zero error in hisi_calc_effective_speed(). The value of max_speed_hz is provided by firmware. Firmware is generally considered as a trusted domain. However, as division by zero errors can cause system failure, for defense measure, the value of max_speed is validated here. So 0 is regarded as invalid and an error code is returned. | ||||
| CVE-2024-46864 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/hyperv: fix kexec crash due to VP assist page corruption commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline") introduces a new cpuhp state for hyperv initialization. cpuhp_setup_state() returns the state number if state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states. For the hyperv case, since a new cpuhp state was introduced it would return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and so hv_cpu_die() won't be called on all CPUs. This means the VP assist page won't be reset. When the kexec kernel tries to setup the VP assist page again, the hypervisor corrupts the memory region of the old VP assist page causing a panic in case the kexec kernel is using that memory elsewhere. This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec panic/hang issues"). Get rid of hyperv_init_cpuhp entirely since we are no longer using a dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with cpuhp_remove_state(). | ||||
| CVE-2024-46690 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd4_deleg_getattr_conflict in presence of third party lease It is not safe to dereference fl->c.flc_owner without first confirming fl->fl_lmops is the expected manager. nfsd4_deleg_getattr_conflict() tests fl_lmops but largely ignores the result and assumes that flc_owner is an nfs4_delegation anyway. This is wrong. With this patch we restore the "!= &nfsd_lease_mng_ops" case to behave as it did before the change mentioned below. This is the same as the current code, but without any reference to a possible delegation. | ||||
| CVE-2024-44996 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vsock: fix recursive ->recvmsg calls After a vsock socket has been added to a BPF sockmap, its prot->recvmsg has been replaced with vsock_bpf_recvmsg(). Thus the following recursiion could happen: vsock_bpf_recvmsg() -> __vsock_recvmsg() -> vsock_connectible_recvmsg() -> prot->recvmsg() -> vsock_bpf_recvmsg() again We need to fix it by calling the original ->recvmsg() without any BPF sockmap logic in __vsock_recvmsg(). | ||||
| CVE-2024-44976 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ata: pata_macio: Fix DMA table overflow Kolbjørn and Jonáš reported that their 32-bit PowerMacs were crashing in pata-macio since commit 09fe2bfa6b83 ("ata: pata_macio: Fix max_segment_size with PAGE_SIZE == 64K"). For example: kernel BUG at drivers/ata/pata_macio.c:544! Oops: Exception in kernel mode, sig: 5 [#1] BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 DEBUG_PAGEALLOC PowerMac ... NIP pata_macio_qc_prep+0xf4/0x190 LR pata_macio_qc_prep+0xfc/0x190 Call Trace: 0xc1421660 (unreliable) ata_qc_issue+0x14c/0x2d4 __ata_scsi_queuecmd+0x200/0x53c ata_scsi_queuecmd+0x50/0xe0 scsi_queue_rq+0x788/0xb1c __blk_mq_issue_directly+0x58/0xf4 blk_mq_plug_issue_direct+0x8c/0x1b4 blk_mq_flush_plug_list.part.0+0x584/0x5e0 __blk_flush_plug+0xf8/0x194 __submit_bio+0x1b8/0x2e0 submit_bio_noacct_nocheck+0x230/0x304 btrfs_work_helper+0x200/0x338 process_one_work+0x1a8/0x338 worker_thread+0x364/0x4c0 kthread+0x100/0x104 start_kernel_thread+0x10/0x14 That commit increased max_segment_size to 64KB, with the justification that the SCSI core was already using that size when PAGE_SIZE == 64KB, and that there was existing logic to split over-sized requests. However with a sufficiently large request, the splitting logic causes each sg to be split into two commands in the DMA table, leading to overflow of the DMA table, triggering the BUG_ON(). With default settings the bug doesn't trigger, because the request size is limited by max_sectors_kb == 1280, however max_sectors_kb can be increased, and apparently some distros do that by default using udev rules. Fix the bug for 4KB kernels by reverting to the old max_segment_size. For 64KB kernels the sg_tablesize needs to be halved, to allow for the possibility that each sg will be split into two. | ||||
| CVE-2024-44973 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm, slub: do not call do_slab_free for kfence object In 782f8906f805 the freeing of kfence objects was moved from deep inside do_slab_free to the wrapper functions outside. This is a nice change, but unfortunately it missed one spot in __kmem_cache_free_bulk. This results in a crash like this: BUG skbuff_head_cache (Tainted: G S B E ): Padding overwritten. 0xffff88907fea0f00-0xffff88907fea0fff @offset=3840 slab_err (mm/slub.c:1129) free_to_partial_list (mm/slub.c:? mm/slub.c:4036) slab_pad_check (mm/slub.c:864 mm/slub.c:1290) check_slab (mm/slub.c:?) free_to_partial_list (mm/slub.c:3171 mm/slub.c:4036) kmem_cache_alloc_bulk (mm/slub.c:? mm/slub.c:4495 mm/slub.c:4586 mm/slub.c:4635) napi_build_skb (net/core/skbuff.c:348 net/core/skbuff.c:527 net/core/skbuff.c:549) All the other callers to do_slab_free appear to be ok. Add a kfence_free check in __kmem_cache_free_bulk to avoid the crash. | ||||
| CVE-2024-44943 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm: gup: stop abusing try_grab_folio A kernel warning was reported when pinning folio in CMA memory when launching SEV virtual machine. The splat looks like: [ 464.325306] WARNING: CPU: 13 PID: 6734 at mm/gup.c:1313 __get_user_pages+0x423/0x520 [ 464.325464] CPU: 13 PID: 6734 Comm: qemu-kvm Kdump: loaded Not tainted 6.6.33+ #6 [ 464.325477] RIP: 0010:__get_user_pages+0x423/0x520 [ 464.325515] Call Trace: [ 464.325520] <TASK> [ 464.325523] ? __get_user_pages+0x423/0x520 [ 464.325528] ? __warn+0x81/0x130 [ 464.325536] ? __get_user_pages+0x423/0x520 [ 464.325541] ? report_bug+0x171/0x1a0 [ 464.325549] ? handle_bug+0x3c/0x70 [ 464.325554] ? exc_invalid_op+0x17/0x70 [ 464.325558] ? asm_exc_invalid_op+0x1a/0x20 [ 464.325567] ? __get_user_pages+0x423/0x520 [ 464.325575] __gup_longterm_locked+0x212/0x7a0 [ 464.325583] internal_get_user_pages_fast+0xfb/0x190 [ 464.325590] pin_user_pages_fast+0x47/0x60 [ 464.325598] sev_pin_memory+0xca/0x170 [kvm_amd] [ 464.325616] sev_mem_enc_register_region+0x81/0x130 [kvm_amd] Per the analysis done by yangge, when starting the SEV virtual machine, it will call pin_user_pages_fast(..., FOLL_LONGTERM, ...) to pin the memory. But the page is in CMA area, so fast GUP will fail then fallback to the slow path due to the longterm pinnalbe check in try_grab_folio(). The slow path will try to pin the pages then migrate them out of CMA area. But the slow path also uses try_grab_folio() to pin the page, it will also fail due to the same check then the above warning is triggered. In addition, the try_grab_folio() is supposed to be used in fast path and it elevates folio refcount by using add ref unless zero. We are guaranteed to have at least one stable reference in slow path, so the simple atomic add could be used. The performance difference should be trivial, but the misuse may be confusing and misleading. Redefined try_grab_folio() to try_grab_folio_fast(), and try_grab_page() to try_grab_folio(), and use them in the proper paths. This solves both the abuse and the kernel warning. The proper naming makes their usecase more clear and should prevent from abusing in the future. peterx said: : The user will see the pin fails, for gpu-slow it further triggers the WARN : right below that failure (as in the original report): : : folio = try_grab_folio(page, page_increm - 1, : foll_flags); : if (WARN_ON_ONCE(!folio)) { <------------------------ here : /* : * Release the 1st page ref if the : * folio is problematic, fail hard. : */ : gup_put_folio(page_folio(page), 1, : foll_flags); : ret = -EFAULT; : goto out; : } [1] https://lore.kernel.org/linux-mm/1719478388-31917-1-git-send-email-yangge1116@126.com/ [shy828301@gmail.com: fix implicit declaration of function try_grab_folio_fast] | ||||
| CVE-2024-43848 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix TTLM teardown work The worker calculates the wrong sdata pointer, so if it ever runs, it'll crash. Fix that. | ||||
| CVE-2024-43847 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 8.8 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix invalid memory access while processing fragmented packets The monitor ring and the reo reinject ring share the same ring mask index. When the driver receives an interrupt for the reo reinject ring, the monitor ring is also processed, leading to invalid memory access. Since monitor support is not yet enabled in ath12k, the ring mask for the monitor ring should be removed. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1 | ||||
| CVE-2024-43844 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: wow: fix GTK offload H2C skbuff issue We mistakenly put skb too large and that may exceed skb->end. Therefore, we fix it. skbuff: skb_over_panic: text:ffffffffc09e9a9d len:416 put:204 head:ffff8fba04eca780 data:ffff8fba04eca7e0 tail:0x200 end:0x140 dev:<NULL> ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:192! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 4747 Comm: kworker/u4:44 Tainted: G O 6.6.30-02659-gc18865c4dfbd #1 86547039b47e46935493f615ee31d0b2d711d35e Hardware name: HP Meep/Meep, BIOS Google_Meep.11297.262.0 03/18/2021 Workqueue: events_unbound async_run_entry_fn RIP: 0010:skb_panic+0x5d/0x60 Code: c6 63 8b 8f bb 4c 0f 45 f6 48 c7 c7 4d 89 8b bb 48 89 ce 44 89 d1 41 56 53 41 53 ff b0 c8 00 00 00 e8 27 5f 23 00 48 83 c4 20 <0f> 0b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 RSP: 0018:ffffaa700144bad0 EFLAGS: 00010282 RAX: 0000000000000089 RBX: 0000000000000140 RCX: 14432c5aad26c900 RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: 0000000000000001 RBP: ffffaa700144bae0 R08: 0000000000000000 R09: ffffaa700144b920 R10: 00000000ffffdfff R11: ffffffffbc28fbc0 R12: ffff8fba4e57a010 R13: 0000000000000000 R14: ffffffffbb8f8b63 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8fba7bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007999c4ad1000 CR3: 000000015503a000 CR4: 0000000000350ee0 Call Trace: <TASK> ? __die_body+0x1f/0x70 ? die+0x3d/0x60 ? do_trap+0xa4/0x110 ? skb_panic+0x5d/0x60 ? do_error_trap+0x6d/0x90 ? skb_panic+0x5d/0x60 ? handle_invalid_op+0x30/0x40 ? skb_panic+0x5d/0x60 ? exc_invalid_op+0x3c/0x50 ? asm_exc_invalid_op+0x16/0x20 ? skb_panic+0x5d/0x60 skb_put+0x49/0x50 rtw89_fw_h2c_wow_gtk_ofld+0xbd/0x220 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5] rtw89_wow_resume+0x31f/0x540 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5] rtw89_ops_resume+0x2b/0xa0 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5] ieee80211_reconfig+0x84/0x13e0 [mac80211 818a894e3b77da6298269c59ed7cdff065a4ed52] ? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d] ? dev_printk_emit+0x51/0x70 ? _dev_info+0x6e/0x90 ? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d] wiphy_resume+0x89/0x180 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d] ? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d] dpm_run_callback+0x3c/0x140 device_resume+0x1f9/0x3c0 ? __pfx_dpm_watchdog_handler+0x10/0x10 async_resume+0x1d/0x30 async_run_entry_fn+0x29/0xd0 process_scheduled_works+0x1d8/0x3d0 worker_thread+0x1fc/0x2f0 kthread+0xed/0x110 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x38/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Modules linked in: ccm 8021q r8153_ecm cdc_ether usbnet r8152 mii dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc uinput rfcomm cmac algif_hash rtw89_8922ae(O) algif_skcipher rtw89_8922a(O) af_alg rtw89_pci(O) rtw89_core(O) btusb(O) snd_soc_sst_bxt_da7219_max98357a btbcm(O) snd_soc_hdac_hdmi btintel(O) snd_soc_intel_hda_dsp_common snd_sof_probes btrtl(O) btmtk(O) snd_hda_codec_hdmi snd_soc_dmic uvcvideo videobuf2_vmalloc uvc videobuf2_memops videobuf2_v4l2 videobuf2_common snd_sof_pci_intel_apl snd_sof_intel_hda_common snd_soc_hdac_hda snd_sof_intel_hda soundwire_intel soundwire_generic_allocation snd_sof_intel_hda_mlink soundwire_cadence snd_sof_pci snd_sof_xtensa_dsp mac80211 snd_soc_acpi_intel_match snd_soc_acpi snd_sof snd_sof_utils soundwire_bus snd_soc_max98357a snd_soc_avs snd_soc_hda_codec snd_hda_ext_core snd_intel_dspcfg snd_intel_sdw_acpi snd_soc_da7219 snd_hda_codec snd_hwdep snd_hda_core veth ip6table_nat xt_MASQUERADE xt_cgroup fuse bluetooth ecdh_generic cfg80211 ecc gsmi: Log Shutdown ---truncated--- | ||||
| CVE-2024-42243 | 2 Linux, Redhat | 2 Linux Kernel, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray Patch series "mm/filemap: Limit page cache size to that supported by xarray", v2. Currently, xarray can't support arbitrary page cache size. More details can be found from the WARN_ON() statement in xas_split_alloc(). In our test whose code is attached below, we hit the WARN_ON() on ARM64 system where the base page size is 64KB and huge page size is 512MB. The issue was reported long time ago and some discussions on it can be found here [1]. [1] https://www.spinics.net/lists/linux-xfs/msg75404.html In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one supported by xarray and avoid PMD-sized page cache if needed. The code changes are suggested by David Hildenbrand. PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path PATCH[4] avoids PMD-sized page cache for shmem files if needed Test program ============ # cat test.c #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <errno.h> #include <sys/syscall.h> #include <sys/mman.h> #define TEST_XFS_FILENAME "/tmp/data" #define TEST_SHMEM_FILENAME "/dev/shm/data" #define TEST_MEM_SIZE 0x20000000 int main(int argc, char **argv) { const char *filename; int fd = 0; void *buf = (void *)-1, *p; int pgsize = getpagesize(); int ret; if (pgsize != 0x10000) { fprintf(stderr, "64KB base page size is required\n"); return -EPERM; } system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled"); system("rm -fr /tmp/data"); system("rm -fr /dev/shm/data"); system("echo 1 > /proc/sys/vm/drop_caches"); /* Open xfs or shmem file */ filename = TEST_XFS_FILENAME; if (argc > 1 && !strcmp(argv[1], "shmem")) filename = TEST_SHMEM_FILENAME; fd = open(filename, O_CREAT | O_RDWR | O_TRUNC); if (fd < 0) { fprintf(stderr, "Unable to open <%s>\n", filename); return -EIO; } /* Extend file size */ ret = ftruncate(fd, TEST_MEM_SIZE); if (ret) { fprintf(stderr, "Error %d to ftruncate()\n", ret); goto cleanup; } /* Create VMA */ buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf == (void *)-1) { fprintf(stderr, "Unable to mmap <%s>\n", filename); goto cleanup; } fprintf(stdout, "mapped buffer at 0x%p\n", buf); ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE); if (ret) { fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n"); goto cleanup; } /* Populate VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE); if (ret) { fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret); goto cleanup; } /* Punch the file to enforce xarray split */ ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, TEST_MEM_SIZE - pgsize, pgsize); if (ret) fprintf(stderr, "Error %d to fallocate()\n", ret); cleanup: if (buf != (void *)-1) munmap(buf, TEST_MEM_SIZE); if (fd > 0) close(fd); return 0; } # gcc test.c -o test # cat /proc/1/smaps | grep KernelPageSize | head -n 1 KernelPageSize: 64 kB # ./test shmem : ------------[ cut here ]------------ WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \ drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \ virtio_net sha1_ce net_failover failover virtio_console virtio_blk \ dimlib virtio_mmio CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TC ---truncated--- | ||||
| CVE-2024-42227 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix overlapping copy within dml_core_mode_programming [WHY] &mode_lib->mp.Watermark and &locals->Watermark are the same address. memcpy may lead to unexpected behavior. [HOW] memmove should be used. | ||||
| CVE-2024-42064 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip pipe if the pipe idx not set properly [why] Driver crashes when pipe idx not set properly [how] Add code to skip the pipe that idx not set properly | ||||
| CVE-2024-35845 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 9.1 Critical |
| In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it. | ||||