Filtered by vendor Nodejs
Subscriptions
Total
182 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2020-8252 | 4 Fedoraproject, Nodejs, Opensuse and 1 more | 6 Fedora, Node.js, Leap and 3 more | 2025-04-30 | 7.8 High |
The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes. | ||||
CVE-2020-8251 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-30 | 7.5 High |
Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission which can make the server unable to accept new connections. | ||||
CVE-2020-8201 | 4 Fedoraproject, Nodejs, Opensuse and 1 more | 6 Fedora, Node.js, Leap and 3 more | 2025-04-30 | 7.4 High |
Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names. | ||||
CVE-2019-15606 | 5 Debian, Nodejs, Opensuse and 2 more | 9 Debian Linux, Node.js, Leap and 6 more | 2025-04-30 | 9.8 Critical |
Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons | ||||
CVE-2019-15605 | 6 Debian, Fedoraproject, Nodejs and 3 more | 16 Debian Linux, Fedora, Node.js and 13 more | 2025-04-30 | 9.8 Critical |
HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed | ||||
CVE-2019-15604 | 5 Debian, Nodejs, Opensuse and 2 more | 12 Debian Linux, Node.js, Leap and 9 more | 2025-04-30 | 7.5 High |
Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate | ||||
CVE-2023-23920 | 3 Debian, Nodejs, Redhat | 5 Debian Linux, Node.js, Enterprise Linux and 2 more | 2025-04-30 | 4.2 Medium |
An untrusted search path vulnerability exists in Node.js. <19.6.1, <18.14.1, <16.19.1, and <14.21.3 that could allow an attacker to search and potentially load ICU data when running with elevated privileges. | ||||
CVE-2023-23919 | 2 Nodejs, Redhat | 2 Node.js, Enterprise Linux | 2025-04-30 | 7.5 High |
A cryptographic vulnerability exists in Node.js <19.2.0, <18.14.1, <16.19.1, <14.21.3 that in some cases did does not clear the OpenSSL error stack after operations that may set it. This may lead to false positive errors during subsequent cryptographic operations that happen to be on the same thread. This in turn could be used to cause a denial of service. | ||||
CVE-2022-43548 | 3 Debian, Nodejs, Redhat | 5 Debian Linux, Node.js, Enterprise Linux and 2 more | 2025-04-30 | 8.1 High |
A OS Command Injection vulnerability exists in Node.js versions <14.21.1, <16.18.1, <18.12.1, <19.0.1 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.The fix for this issue in https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32212 was incomplete and this new CVE is to complete the fix. | ||||
CVE-2022-35255 | 4 Debian, Nodejs, Redhat and 1 more | 4 Debian Linux, Node.js, Enterprise Linux and 1 more | 2025-04-30 | 9.1 Critical |
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material. | ||||
CVE-2022-36046 | 2 Nodejs, Vercel | 2 Node.js, Next.js | 2025-04-23 | 5.3 Medium |
Next.js is a React framework that can provide building blocks to create web applications. All of the following must be true to be affected by this CVE: Next.js version 12.2.3, Node.js version above v15.0.0 being used with strict `unhandledRejection` exiting AND using next start or a [custom server](https://nextjs.org/docs/advanced-features/custom-server). Deployments on Vercel ([vercel.com](https://vercel.com/)) are not affected along with similar environments where `next-server` isn't being shared across requests. | ||||
CVE-2022-31150 | 2 Nodejs, Redhat | 2 Undici, Acm | 2025-04-22 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js. It is possible to inject CRLF sequences into request headers in undici in versions less than 5.7.1. A fix was released in version 5.8.0. Sanitizing all HTTP headers from untrusted sources to eliminate `\r\n` is a workaround for this issue. | ||||
CVE-2022-31151 | 2 Nodejs, Redhat | 2 Undici, Acm | 2025-04-22 | 3.7 Low |
Authorization headers are cleared on cross-origin redirect. However, cookie headers which are sensitive headers and are official headers found in the spec, remain uncleared. There are active users using cookie headers in undici. This may lead to accidental leakage of cookie to a 3rd-party site or a malicious attacker who can control the redirection target (ie. an open redirector) to leak the cookie to the 3rd party site. This was patched in v5.7.1. By default, this vulnerability is not exploitable. Do not enable redirections, i.e. `maxRedirections: 0` (the default). | ||||
CVE-2022-35949 | 2 Nodejs, Redhat | 2 Undici, Acm | 2025-04-22 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js.`undici` is vulnerable to SSRF (Server-side Request Forgery) when an application takes in **user input** into the `path/pathname` option of `undici.request`. If a user specifies a URL such as `http://127.0.0.1` or `//127.0.0.1` ```js const undici = require("undici") undici.request({origin: "http://example.com", pathname: "//127.0.0.1"}) ``` Instead of processing the request as `http://example.org//127.0.0.1` (or `http://example.org/http://127.0.0.1` when `http://127.0.0.1 is used`), it actually processes the request as `http://127.0.0.1/` and sends it to `http://127.0.0.1`. If a developer passes in user input into `path` parameter of `undici.request`, it can result in an _SSRF_ as they will assume that the hostname cannot change, when in actual fact it can change because the specified path parameter is combined with the base URL. This issue was fixed in `undici@5.8.1`. The best workaround is to validate user input before passing it to the `undici.request` call. | ||||
CVE-2022-35948 | 2 Nodejs, Redhat | 2 Undici, Acm | 2025-04-22 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js.`=< undici@5.8.0` users are vulnerable to _CRLF Injection_ on headers when using unsanitized input as request headers, more specifically, inside the `content-type` header. Example: ``` import { request } from 'undici' const unsanitizedContentTypeInput = 'application/json\r\n\r\nGET /foo2 HTTP/1.1' await request('http://localhost:3000, { method: 'GET', headers: { 'content-type': unsanitizedContentTypeInput }, }) ``` The above snippet will perform two requests in a single `request` API call: 1) `http://localhost:3000/` 2) `http://localhost:3000/foo2` This issue was patched in Undici v5.8.1. Sanitize input when sending content-type headers using user input as a workaround. | ||||
CVE-2015-2927 | 3 Debian, Nodejs, Uronode | 3 Debian Linux, Node.js, Uro Node | 2025-04-20 | N/A |
node 0.3.2 and URONode before 1.0.5r3 allows remote attackers to cause a denial of service (bandwidth consumption). | ||||
CVE-2017-3731 | 3 Nodejs, Openssl, Redhat | 4 Node.js, Openssl, Enterprise Linux and 1 more | 2025-04-20 | 7.5 High |
If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k. | ||||
CVE-2017-14919 | 1 Nodejs | 1 Node.js | 2025-04-20 | N/A |
Node.js before 4.8.5, 6.x before 6.11.5, and 8.x before 8.8.0 allows remote attackers to cause a denial of service (uncaught exception and crash) by leveraging a change in the zlib module 1.2.9 making 8 an invalid value for the windowBits parameter. | ||||
CVE-2017-3738 | 4 Debian, Nodejs, Openssl and 1 more | 5 Debian Linux, Node.js, Openssl and 2 more | 2025-04-20 | 5.9 Medium |
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository. | ||||
CVE-2016-7055 | 3 Nodejs, Openssl, Redhat | 3 Node.js, Openssl, Jboss Core Services | 2025-04-20 | 5.9 Medium |
There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected. |