Filtered by vendor Redhat
Subscriptions
Filtered by product Enterprise Linux
Subscriptions
Total
15504 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-0217 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Rhel Eus | 2025-11-04 | 7.5 High |
| An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function. This will most likely lead to an application crash. This function can be called on public keys supplied from untrusted sources which could allow an attacker to cause a denial of service attack. The TLS implementation in OpenSSL does not call this function but applications might call the function if there are additional security requirements imposed by standards such as FIPS 140-3. | ||||
| CVE-2023-0216 | 3 Openssl, Redhat, Stormshield | 4 Openssl, Enterprise Linux, Rhel Eus and 1 more | 2025-11-04 | 7.5 High |
| An invalid pointer dereference on read can be triggered when an application tries to load malformed PKCS7 data with the d2i_PKCS7(), d2i_PKCS7_bio() or d2i_PKCS7_fp() functions. The result of the dereference is an application crash which could lead to a denial of service attack. The TLS implementation in OpenSSL does not call this function however third party applications might call these functions on untrusted data. | ||||
| CVE-2023-0215 | 3 Openssl, Redhat, Stormshield | 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more | 2025-11-04 | 7.5 High |
| The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. | ||||
| CVE-2022-4450 | 3 Openssl, Redhat, Stormshield | 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more | 2025-11-04 | 7.5 High |
| The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue. | ||||
| CVE-2022-4304 | 3 Openssl, Redhat, Stormshield | 8 Openssl, Enterprise Linux, Jboss Core Services and 5 more | 2025-11-04 | 5.9 Medium |
| A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. | ||||
| CVE-2022-4203 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Rhel Eus | 2025-11-04 | 4.9 Medium |
| A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext) although we are not aware of any working exploit leading to memory contents disclosure as of the time of release of this advisory. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. | ||||
| CVE-2022-3786 | 4 Fedoraproject, Nodejs, Openssl and 1 more | 4 Fedora, Node.js, Openssl and 1 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. | ||||
| CVE-2022-3602 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 5 Fedora, Clustered Data Ontap, Node.js and 2 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). | ||||
| CVE-2020-26558 | 6 Bluetooth, Debian, Fedoraproject and 3 more | 35 Bluetooth Core Specification, Debian Linux, Fedora and 32 more | 2025-11-04 | 4.2 Medium |
| Bluetooth LE and BR/EDR secure pairing in Bluetooth Core Specification 2.1 through 5.2 may permit a nearby man-in-the-middle attacker to identify the Passkey used during pairing (in the Passkey authentication procedure) by reflection of the public key and the authentication evidence of the initiating device, potentially permitting this attacker to complete authenticated pairing with the responding device using the correct Passkey for the pairing session. The attack methodology determines the Passkey value one bit at a time. | ||||
| CVE-2020-26555 | 4 Bluetooth, Fedoraproject, Intel and 1 more | 33 Bluetooth Core Specification, Fedora, Ac 3165 and 30 more | 2025-11-04 | 5.4 Medium |
| Bluetooth legacy BR/EDR PIN code pairing in Bluetooth Core Specification 1.0B through 5.2 may permit an unauthenticated nearby device to spoof the BD_ADDR of the peer device to complete pairing without knowledge of the PIN. | ||||
| CVE-2020-25687 | 4 Debian, Fedoraproject, Redhat and 1 more | 5 Debian Linux, Fedora, Enterprise Linux and 2 more | 2025-11-04 | 5.9 Medium |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. This flaw allows a remote attacker, who can create valid DNS replies, to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. | ||||
| CVE-2020-25686 | 5 Arista, Debian, Fedoraproject and 2 more | 10 Eos, Debian Linux, Fedora and 7 more | 2025-11-04 | 3.7 Low |
| A flaw was found in dnsmasq before version 2.83. When receiving a query, dnsmasq does not check for an existing pending request for the same name and forwards a new request. By default, a maximum of 150 pending queries can be sent to upstream servers, so there can be at most 150 queries for the same name. This flaw allows an off-path attacker on the network to substantially reduce the number of attempts that it would have to perform to forge a reply and have it accepted by dnsmasq. This issue is mentioned in the "Birthday Attacks" section of RFC5452. If chained with CVE-2020-25684, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. | ||||
| CVE-2020-25685 | 5 Arista, Debian, Fedoraproject and 2 more | 10 Eos, Debian Linux, Fedora and 7 more | 2025-11-04 | 3.7 Low |
| A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in forward.c:reply_query(), which is the forwarded query that matches the reply, by only using a weak hash of the query name. Due to the weak hash (CRC32 when dnsmasq is compiled without DNSSEC, SHA-1 when it is) this flaw allows an off-path attacker to find several different domains all having the same hash, substantially reducing the number of attempts they would have to perform to forge a reply and get it accepted by dnsmasq. This is in contrast with RFC5452, which specifies that the query name is one of the attributes of a query that must be used to match a reply. This flaw could be abused to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25684 the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. | ||||
| CVE-2020-25684 | 5 Arista, Debian, Fedoraproject and 2 more | 10 Eos, Debian Linux, Fedora and 7 more | 2025-11-04 | 3.7 Low |
| A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries. However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. | ||||
| CVE-2020-25683 | 4 Debian, Fedoraproject, Redhat and 1 more | 5 Debian Linux, Fedora, Enterprise Linux and 2 more | 2025-11-04 | 5.9 Medium |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. | ||||
| CVE-2020-25682 | 4 Debian, Fedoraproject, Redhat and 1 more | 5 Debian Linux, Fedora, Enterprise Linux and 2 more | 2025-11-04 | 8.1 High |
| A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap-allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | ||||
| CVE-2020-25681 | 4 Debian, Fedoraproject, Redhat and 1 more | 5 Debian Linux, Fedora, Enterprise Linux and 2 more | 2025-11-04 | 8.1 High |
| A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data. An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | ||||
| CVE-2025-55248 | 4 Apple, Linux, Microsoft and 1 more | 22 Macos, Linux Kernel, .net and 19 more | 2025-11-04 | 4.8 Medium |
| Inadequate encryption strength in .NET, .NET Framework, Visual Studio allows an authorized attacker to disclose information over a network. | ||||
| CVE-2025-55315 | 2 Microsoft, Redhat | 4 Asp.net Core, Visual Studio, Visual Studio 2022 and 1 more | 2025-11-04 | 9.9 Critical |
| Inconsistent interpretation of http requests ('http request/response smuggling') in ASP.NET Core allows an authorized attacker to bypass a security feature over a network. | ||||
| CVE-2025-55247 | 3 Linux, Microsoft, Redhat | 3 Linux Kernel, .net, Enterprise Linux | 2025-11-04 | 7.3 High |
| Improper link resolution before file access ('link following') in .NET allows an authorized attacker to elevate privileges locally. | ||||