In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case.
Metrics
Affected Vendors & Products
References
History
Tue, 29 Jul 2025 12:30:00 +0000
Type | Values Removed | Values Added |
---|---|---|
References |
| |
Metrics |
threat_severity
|
cvssV3_1
|
Tue, 29 Jul 2025 08:00:00 +0000
Type | Values Removed | Values Added |
---|---|---|
First Time appeared |
Linux
Linux linux Kernel |
|
Vendors & Products |
Linux
Linux linux Kernel |
Mon, 28 Jul 2025 11:30:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Description | In the Linux kernel, the following vulnerability has been resolved: comedi: Fix use of uninitialized data in insn_rw_emulate_bits() For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital" subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and `COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have `insn_read` and `insn_write` handler functions, but to have an `insn_bits` handler function for handling Comedi `INSN_BITS` instructions. In that case, the subdevice's `insn_read` and/or `insn_write` function handler pointers are set to point to the `insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`. For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the supplied `data[0]` value is a valid copy from user memory. It will at least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in "comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are allocated. However, if `insn->n` is 0 (which is allowable for `INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain uninitialized data, and certainly contains invalid data, possibly from a different instruction in the array of instructions handled by `do_insnlist_ioctl()`. This will result in an incorrect value being written to the digital output channel (or to the digital input/output channel if configured as an output), and may be reflected in the internal saved state of the channel. Fix it by returning 0 early if `insn->n` is 0, before reaching the code that accesses `data[0]`. Previously, the function always returned 1 on success, but it is supposed to be the number of data samples actually read or written up to `insn->n`, which is 0 in this case. | |
Title | comedi: Fix use of uninitialized data in insn_rw_emulate_bits() | |
References |
|
|

Status: PUBLISHED
Assigner: Linux
Published: 2025-07-28T11:21:45.142Z
Updated: 2025-07-28T11:21:45.142Z
Reserved: 2025-04-16T04:51:24.021Z
Link: CVE-2025-38480

No data.

Status : Awaiting Analysis
Published: 2025-07-28T12:15:29.853
Modified: 2025-07-29T14:14:29.590
Link: CVE-2025-38480
