Filtered by vendor Redhat
Subscriptions
Filtered by product Openshift Data Foundation
Subscriptions
Total
154 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-24999 | 4 Debian, Openjsf, Qs Project and 1 more | 12 Debian Linux, Express, Qs and 9 more | 2025-04-29 | 7.5 High |
qs before 6.10.3, as used in Express before 4.17.3 and other products, allows attackers to cause a Node process hang for an Express application because an __ proto__ key can be used. In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000. The fix was backported to qs 6.9.7, 6.8.3, 6.7.3, 6.6.1, 6.5.3, 6.4.1, 6.3.3, and 6.2.4 (and therefore Express 4.17.3, which has "deps: qs@6.9.7" in its release description, is not vulnerable). | ||||
CVE-2022-38900 | 2 Decode-uri-component Project, Redhat | 7 Decode-uri-component, Enterprise Linux, Jboss Enterprise Bpms Platform and 4 more | 2025-04-25 | 7.5 High |
decode-uri-component 0.2.0 is vulnerable to Improper Input Validation resulting in DoS. | ||||
CVE-2024-11831 | 1 Redhat | 33 Acm, Advanced Cluster Security, Ansible Automation Platform and 30 more | 2025-04-24 | 5.4 Medium |
A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. | ||||
CVE-2022-21698 | 4 Fedoraproject, Prometheus, Rdo Project and 1 more | 17 Extra Packages For Enterprise Linux, Fedora, Client Golang and 14 more | 2025-04-23 | 7.5 High |
client_golang is the instrumentation library for Go applications in Prometheus, and the promhttp package in client_golang provides tooling around HTTP servers and clients. In client_golang prior to version 1.11.1, HTTP server is susceptible to a Denial of Service through unbounded cardinality, and potential memory exhaustion, when handling requests with non-standard HTTP methods. In order to be affected, an instrumented software must use any of `promhttp.InstrumentHandler*` middleware except `RequestsInFlight`; not filter any specific methods (e.g GET) before middleware; pass metric with `method` label name to our middleware; and not have any firewall/LB/proxy that filters away requests with unknown `method`. client_golang version 1.11.1 contains a patch for this issue. Several workarounds are available, including removing the `method` label name from counter/gauge used in the InstrumentHandler; turning off affected promhttp handlers; adding custom middleware before promhttp handler that will sanitize the request method given by Go http.Request; and using a reverse proxy or web application firewall, configured to only allow a limited set of methods. | ||||
CVE-2022-24771 | 2 Digitalbazaar, Redhat | 6 Forge, Acm, Jboss Enterprise Bpms Platform and 3 more | 2025-04-23 | 7.5 High |
Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code is lenient in checking the digest algorithm structure. This can allow a crafted structure that steals padding bytes and uses unchecked portion of the PKCS#1 encoded message to forge a signature when a low public exponent is being used. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. | ||||
CVE-2022-24773 | 2 Digitalbazaar, Redhat | 5 Forge, Acm, Openshift Data Foundation and 2 more | 2025-04-23 | 5.3 Medium |
Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code does not properly check `DigestInfo` for a proper ASN.1 structure. This can lead to successful verification with signatures that contain invalid structures but a valid digest. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. | ||||
CVE-2022-24772 | 2 Digitalbazaar, Redhat | 6 Forge, Acm, Jboss Enterprise Bpms Platform and 3 more | 2025-04-23 | 7.5 High |
Forge (also called `node-forge`) is a native implementation of Transport Layer Security in JavaScript. Prior to version 1.3.0, RSA PKCS#1 v1.5 signature verification code does not check for tailing garbage bytes after decoding a `DigestInfo` ASN.1 structure. This can allow padding bytes to be removed and garbage data added to forge a signature when a low public exponent is being used. The issue has been addressed in `node-forge` version 1.3.0. There are currently no known workarounds. | ||||
CVE-2022-24785 | 6 Debian, Fedoraproject, Momentjs and 3 more | 16 Debian Linux, Fedora, Moment and 13 more | 2025-04-23 | 7.5 High |
Moment.js is a JavaScript date library for parsing, validating, manipulating, and formatting dates. A path traversal vulnerability impacts npm (server) users of Moment.js between versions 1.0.1 and 2.29.1, especially if a user-provided locale string is directly used to switch moment locale. This problem is patched in 2.29.2, and the patch can be applied to all affected versions. As a workaround, sanitize the user-provided locale name before passing it to Moment.js. | ||||
CVE-2022-31129 | 4 Debian, Fedoraproject, Momentjs and 1 more | 17 Debian Linux, Fedora, Moment and 14 more | 2025-04-22 | 7.5 High |
moment is a JavaScript date library for parsing, validating, manipulating, and formatting dates. Affected versions of moment were found to use an inefficient parsing algorithm. Specifically using string-to-date parsing in moment (more specifically rfc2822 parsing, which is tried by default) has quadratic (N^2) complexity on specific inputs. Users may notice a noticeable slowdown is observed with inputs above 10k characters. Users who pass user-provided strings without sanity length checks to moment constructor are vulnerable to (Re)DoS attacks. The problem is patched in 2.29.4, the patch can be applied to all affected versions with minimal tweaking. Users are advised to upgrade. Users unable to upgrade should consider limiting date lengths accepted from user input. | ||||
CVE-2022-23539 | 2 Auth0, Redhat | 2 Jsonwebtoken, Openshift Data Foundation | 2025-04-15 | 5.9 Medium |
Versions `<=8.5.1` of `jsonwebtoken` library could be misconfigured so that legacy, insecure key types are used for signature verification. For example, DSA keys could be used with the RS256 algorithm. You are affected if you are using an algorithm and a key type other than a combination listed in the GitHub Security Advisory as unaffected. This issue has been fixed, please update to version 9.0.0. This version validates for asymmetric key type and algorithm combinations. Please refer to the above mentioned algorithm / key type combinations for the valid secure configuration. After updating to version 9.0.0, if you still intend to continue with signing or verifying tokens using invalid key type/algorithm value combinations, you’ll need to set the `allowInvalidAsymmetricKeyTypes` option to `true` in the `sign()` and/or `verify()` functions. | ||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 364 Http Server, Opensearch Data Prepper, Apisix and 361 more | 2025-04-12 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2021-4238 | 2 Goutils Project, Redhat | 5 Goutils, Openshift, Openshift Data Foundation and 2 more | 2025-04-11 | 9.1 Critical |
Randomly-generated alphanumeric strings contain significantly less entropy than expected. The RandomAlphaNumeric and CryptoRandomAlphaNumeric functions always return strings containing at least one digit from 0 to 9. This significantly reduces the amount of entropy in short strings generated by these functions. | ||||
CVE-2021-4235 | 2 Redhat, Yaml Project | 3 Openshift, Openshift Data Foundation, Yaml | 2025-04-11 | 5.5 Medium |
Due to unbounded alias chasing, a maliciously crafted YAML file can cause the system to consume significant system resources. If parsing user input, this may be used as a denial of service vector. | ||||
CVE-2024-5042 | 1 Redhat | 2 Acm, Openshift Data Foundation | 2025-04-07 | 6.6 Medium |
A flaw was found in the Submariner project. Due to unnecessary role-based access control permissions, a privileged attacker can run a malicious container on a node that may allow them to steal service account tokens and further compromise other nodes and potentially the entire cluster. | ||||
CVE-2024-9355 | 1 Redhat | 21 Amq Streams, Ansible Automation Platform, Container Native Virtualization and 18 more | 2025-04-03 | 6.5 Medium |
A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. | ||||
CVE-2024-1394 | 1 Redhat | 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more | 2025-03-25 | 7.5 High |
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. | ||||
CVE-2024-12401 | 1 Redhat | 8 Cert Manager, Cryostat, Hybrid Cloud Gateway and 5 more | 2025-03-15 | 4.4 Medium |
A flaw was found in the cert-manager package. This flaw allows an attacker who can modify PEM data that the cert-manager reads, for example, in a Secret resource, to use large amounts of CPU in the cert-manager controller pod to effectively create a denial-of-service (DoS) vector for the cert-manager in the cluster. | ||||
CVE-2024-24785 | 1 Redhat | 17 Enterprise Linux, Kube Descheduler Operator, Logging and 14 more | 2025-03-14 | 5.4 Medium |
If errors returned from MarshalJSON methods contain user controlled data, they may be used to break the contextual auto-escaping behavior of the html/template package, allowing for subsequent actions to inject unexpected content into templates. | ||||
CVE-2022-41725 | 2 Golang, Redhat | 19 Go, Ansible Automation Platform, Cert Manager and 16 more | 2025-03-07 | 7.5 High |
A denial of service is possible from excessive resource consumption in net/http and mime/multipart. Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely unlimited amounts of memory and disk files. This also affects form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. ReadForm takes a maxMemory parameter, and is documented as storing "up to maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts which cannot be stored in memory are stored on disk in temporary files. The unconfigurable 10MB reserved for non-file parts is excessively large and can potentially open a denial of service vector on its own. However, ReadForm did not properly account for all memory consumed by a parsed form, such as map entry overhead, part names, and MIME headers, permitting a maliciously crafted form to consume well over 10MB. In addition, ReadForm contained no limit on the number of disk files created, permitting a relatively small request body to create a large number of disk temporary files. With fix, ReadForm now properly accounts for various forms of memory overhead, and should now stay within its documented limit of 10MB + maxMemory bytes of memory consumption. Users should still be aware that this limit is high and may still be hazardous. In addition, ReadForm now creates at most one on-disk temporary file, combining multiple form parts into a single temporary file. The mime/multipart.File interface type's documentation states, "If stored on disk, the File's underlying concrete type will be an *os.File.". This is no longer the case when a form contains more than one file part, due to this coalescing of parts into a single file. The previous behavior of using distinct files for each form part may be reenabled with the environment variable GODEBUG=multipartfiles=distinct. Users should be aware that multipart.ReadForm and the http.Request methods that call it do not limit the amount of disk consumed by temporary files. Callers can limit the size of form data with http.MaxBytesReader. | ||||
CVE-2022-41724 | 2 Golang, Redhat | 20 Go, Ansible Automation Platform, Cert Manager and 17 more | 2025-03-07 | 7.5 High |
Large handshake records may cause panics in crypto/tls. Both clients and servers may send large TLS handshake records which cause servers and clients, respectively, to panic when attempting to construct responses. This affects all TLS 1.3 clients, TLS 1.2 clients which explicitly enable session resumption (by setting Config.ClientSessionCache to a non-nil value), and TLS 1.3 servers which request client certificates (by setting Config.ClientAuth >= RequestClientCert). |