Filtered by vendor Cisco
Subscriptions
Filtered by product Nexus 3064
Subscriptions
Total
52 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2017-3883 | 1 Cisco | 47 9500 R, Firepower 4100, Firepower 9300 and 44 more | 2025-04-20 | N/A |
A vulnerability in the authentication, authorization, and accounting (AAA) implementation of Cisco Firepower Extensible Operating System (FXOS) and NX-OS System Software could allow an unauthenticated, remote attacker to cause an affected device to reload. The vulnerability occurs because AAA processes prevent the NX-OS System Manager from receiving keepalive messages when an affected device receives a high rate of login attempts, such as in a brute-force login attack. System memory can run low on the FXOS devices under the same conditions, which could cause the AAA process to unexpectedly restart or cause the device to reload. An attacker could exploit this vulnerability by performing a brute-force login attack against a device that is configured with AAA security services. A successful exploit could allow the attacker to cause the affected device to reload. This vulnerability affects the following Cisco products if they are running Cisco FXOS or NX-OS System Software that is configured for AAA services: Firepower 4100 Series Next-Generation Firewall, Firepower 9300 Security Appliance, Multilayer Director Switches, Nexus 1000V Series Switches, Nexus 1100 Series Cloud Services Platforms, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 5000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules, Unified Computing System (UCS) 6100 Series Fabric Interconnects, UCS 6200 Series Fabric Interconnects, UCS 6300 Series Fabric Interconnects. Cisco Bug IDs: CSCuq58760, CSCuq71257, CSCur97432, CSCus05214, CSCux54898, CSCvc33141, CSCvd36971, CSCve03660. | ||||
CVE-2017-12301 | 1 Cisco | 38 Multilayer Director, Nexus 2000, Nexus 3000 and 35 more | 2025-04-20 | N/A |
A vulnerability in the Python scripting subsystem of Cisco NX-OS Software could allow an authenticated, local attacker to escape the Python parser and gain unauthorized access to the underlying operating system of the device. The vulnerability exists due to insufficient sanitization of user-supplied parameters that are passed to certain Python functions within the scripting sandbox of the affected device. An attacker could exploit this vulnerability to escape the scripting sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. To exploit this vulnerability, an attacker must have local access and be authenticated to the targeted device with administrative or Python execution privileges. These requirements could limit the possibility of a successful exploit. This vulnerability affects the following Cisco products if they are running Cisco NX-OS Software: Multilayer Director Switches, Nexus 2000 Series Fabric Extenders, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 5000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches - Standalone, NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules. Cisco Bug IDs: CSCvb86832, CSCvd86474, CSCvd86479, CSCvd86484, CSCvd86490, CSCve97102, CSCvf12757, CSCvf12804, CSCvf12815, CSCvf15198. | ||||
CVE-2015-4323 | 1 Cisco | 28 Mds 9000 Nx-os, Nexus 1000v, Nexus 3016 and 25 more | 2025-04-12 | N/A |
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.9); Nexus 3000 devices 6.0(2)U5(1.41), 7.0(3)I2(0.373), and 7.3(0)ZN(0.83); Nexus 4000 devices 4.1(2)E1(1b); Nexus 7000 devices 6.2(14)S1; Nexus 9000 devices 7.3(0)ZN(0.9); and MDS 9000 devices 6.2 (13) and 7.1(0)ZN(91.99) and MDS SAN-OS 7.1(0)ZN(91.99) allows remote attackers to cause a denial of service (device outage) via a crafted ARP packet, related to incorrect MTU validation, aka Bug IDs CSCuv71933, CSCuv61341, CSCuv61321, CSCuu78074, CSCut37060, CSCuv61266, CSCuv61351, CSCuv61358, and CSCuv61366. | ||||
CVE-2015-0775 | 1 Cisco | 28 Mds 9000 Nx-os, Nexus 1000v, Nexus 3016 and 25 more | 2025-04-12 | N/A |
The banner (aka MOTD) implementation in Cisco NX-OS 4.1(2)E1(1f) on Nexus 4000 devices, 5.2(1)SV3(2.1) on Nexus 1000V devices, 6.0(2)N2(2) on Nexus 5000 devices, 6.2(11) on MDS 9000 devices, 6.2(12) on Nexus 7000 devices, 7.0(3) on Nexus 9000 devices, and 7.2(0)ZN(99.67) on Nexus 3000 devices allows remote attackers to cause a denial of service (login process reset) via an unspecified terminal-session request during TELNET session setup, aka Bug IDs CSCuo10554, CSCuu75466, CSCuu75471, CSCuu75484, CSCuu75498, CSCuu77170, and CSCuu77182. | ||||
CVE-2015-4324 | 1 Cisco | 27 Nexus 1000v, Nexus 3016, Nexus 3048 and 24 more | 2025-04-12 | N/A |
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.81), Nexus 3000 devices 7.3(0)ZN(0.81), Nexus 4000 devices 4.1(2)E1(1c), Nexus 7000 devices 7.2(0)N1(0.1), and Nexus 9000 devices 7.3(0)ZN(0.81) allows remote attackers to cause a denial of service (IGMP process restart) via a malformed IGMPv3 packet that is mishandled during memory allocation, aka Bug IDs CSCuv69713, CSCuv69717, CSCuv69723, CSCuv69732, and CSCuv48908. | ||||
CVE-2015-4296 | 1 Cisco | 11 Nexus 3016, Nexus 3048, Nexus 3064 and 8 more | 2025-04-12 | N/A |
Nexus Data Broker (NDB) on Cisco Nexus 3000 devices with software 6.0(2)A6(1) allows remote attackers to cause a denial of service (Java process restart) via crafted connections to the Java application, aka Bug ID CSCut87006. | ||||
CVE-2015-4237 | 1 Cisco | 38 Mds 9100, Mds 9140, Mds 9500 and 35 more | 2025-04-12 | N/A |
The CLI parser in Cisco NX-OS 4.1(2)E1(1), 6.2(11b), 6.2(12), 7.2(0)ZZ(99.1), 7.2(0)ZZ(99.3), and 9.1(1)SV1(3.1.8) on Nexus devices allows local users to execute arbitrary OS commands via crafted characters in a filename, aka Bug IDs CSCuv08491, CSCuv08443, CSCuv08480, CSCuv08448, CSCuu99291, CSCuv08434, and CSCuv08436. | ||||
CVE-2016-1329 | 5 Cisco, Samsung, Sun and 2 more | 10 Nexus 3048, Nexus 3064, Nexus 3064t and 7 more | 2025-04-12 | N/A |
Cisco NX-OS 6.0(2)U6(1) through 6.0(2)U6(5) on Nexus 3000 devices and 6.0(2)A6(1) through 6.0(2)A6(5) and 6.0(2)A7(1) on Nexus 3500 devices has hardcoded credentials, which allows remote attackers to obtain root privileges via a (1) TELNET or (2) SSH session, aka Bug ID CSCuy25800. | ||||
CVE-2015-0658 | 1 Cisco | 35 Nexus 3016, Nexus 3048, Nexus 3064 and 32 more | 2025-04-12 | N/A |
The DHCP implementation in the PowerOn Auto Provisioning (POAP) feature in Cisco NX-OS does not properly restrict the initialization process, which allows remote attackers to execute arbitrary commands as root by sending crafted response packets on the local network, aka Bug ID CSCur14589. | ||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 364 Http Server, Opensearch Data Prepper, Apisix and 361 more | 2025-04-12 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2024-20399 | 1 Cisco | 201 Mds 9000, Mds 9100, Mds 9132t and 198 more | 2025-01-27 | 6 Medium |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated user in possession of Administrator credentials to execute arbitrary commands as root on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments that are passed to specific configuration CLI commands. An attacker could exploit this vulnerability by including crafted input as the argument of an affected configuration CLI command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privileges of root. Note: To successfully exploit this vulnerability on a Cisco NX-OS device, an attacker must have Administrator credentials. The following Cisco devices already allow administrative users to access the underlying operating system through the bash-shell feature, so, for these devices, this vulnerability does not grant any additional privileges: Nexus 3000 Series Switches Nexus 7000 Series Switches that are running Cisco NX-OS Software releases 8.1(1) and later Nexus 9000 Series Switches in standalone NX-OS mode | ||||
CVE-2018-0309 | 1 Cisco | 40 Nexus 3016, Nexus 3048, Nexus 3064 and 37 more | 2024-11-29 | N/A |
A vulnerability in the implementation of a specific CLI command and the associated Simple Network Management Protocol (SNMP) MIB for Cisco NX-OS (in standalone NX-OS mode) on Cisco Nexus 3000 and 9000 Series Switches could allow an authenticated, remote attacker to exhaust system memory on an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to the incorrect implementation of the CLI command, resulting in a failure to free all allocated memory upon completion. An attacker could exploit this vulnerability by authenticating to the affected device and repeatedly issuing a specific CLI command or sending a specific SNMP poll request for a specific Object Identifier (OID). A successful exploit could allow the attacker to cause the IP routing process to restart or to cause a device reset, resulting in a DoS condition. Cisco Bug IDs: CSCvf23136. | ||||
CVE-2019-1690 | 1 Cisco | 100 Application Policy Infrastructure Controller, Firepower 2110, Firepower 2120 and 97 more | 2024-11-21 | 6.5 Medium |
A vulnerability in the management interface of Cisco Application Policy Infrastructure Controller (APIC) software could allow an unauthenticated, adjacent attacker to gain unauthorized access on an affected device. The vulnerability is due to a lack of proper access control mechanisms for IPv6 link-local connectivity imposed on the management interface of an affected device. An attacker on the same physical network could exploit this vulnerability by attempting to connect to the IPv6 link-local address on the affected device. A successful exploit could allow the attacker to bypass default access control restrictions on an affected device. Cisco Application Policy Infrastructure Controller (APIC) devices running versions prior to 4.2(0.21c) are affected. | ||||
CVE-2019-1731 | 1 Cisco | 76 Nexus 3016, Nexus 3048, Nexus 3064 and 73 more | 2024-11-21 | 4.4 Medium |
A vulnerability in the SSH CLI key management functionality of Cisco NX-OS Software could allow an authenticated, local attacker to expose a user's private SSH key to all authenticated users on the targeted device. The attacker must authenticate with valid administrator device credentials. The vulnerability is due to incomplete error handling if a specific error type occurs during the SSH key export. An attacker could exploit this vulnerability by authenticating to the device and entering a crafted command at the CLI. A successful exploit could allow the attacker to expose a user's private SSH key. In addition, a similar type of error in the SSH key import could cause the passphrase-protected private SSH key to be imported unintentionally. | ||||
CVE-2019-1735 | 1 Cisco | 82 Mds 9000, Mds 9100, Mds 9200 and 79 more | 2024-11-21 | 7.8 High |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands with elevated privileges on the underlying operating system of an affected device. The vulnerability is due to insufficient validation of arguments passed to certain CLI commands. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with elevated privileges. An attacker would need valid user credentials to exploit this vulnerability. | ||||
CVE-2019-1779 | 1 Cisco | 90 Firepower 4110, Firepower 4112, Firepower 4115 and 87 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco FXOS Software and Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device with elevated privileges. The vulnerability is due to insufficient validation of arguments passed to certain CLI commands. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with elevated privileges. An attacker would need valid device credentials to exploit this vulnerability. | ||||
CVE-2019-1780 | 1 Cisco | 92 Firepower 4110, Firepower 4115, Firepower 4120 and 89 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco FXOS Software and Cisco NX-OS Software could allow an authenticated, local attacker with administrator credentials to execute arbitrary commands on the underlying operating system of an affected device with elevated privileges. The vulnerability is due to insufficient validation of arguments passed to certain CLI commands. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with elevated privileges. An attacker would need valid administrator credentials to exploit this vulnerability. NX-OS versions prior to 8.3(1) are affected. NX-OS versions prior to 8.3(1) are affected. | ||||
CVE-2019-1734 | 1 Cisco | 94 Firepower 4110, Firepower 4112, Firepower 4115 and 91 more | 2024-11-21 | 5.5 Medium |
A vulnerability in the implementation of a CLI diagnostic command in Cisco FXOS Software and Cisco NX-OS Software could allow an authenticated, local attacker to view sensitive system files that should be restricted. The attacker could use this information to conduct additional reconnaissance attacks. The vulnerability is due to incomplete role-based access control (RBAC) verification. An attacker could exploit this vulnerability by authenticating to the device and issuing a specific CLI diagnostic command with crafted user-input parameters. An exploit could allow the attacker to perform an arbitrary read of a file on the device, and the file may contain sensitive information. The attacker needs valid device credentials to exploit this vulnerability. | ||||
CVE-2023-20050 | 1 Cisco | 111 Mds 9000, Mds 9100, Mds 9132t and 108 more | 2024-11-21 | 4.4 Medium |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments that are passed to specific CLI commands. An attacker could exploit this vulnerability by including crafted input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privileges of the currently logged-in user. | ||||
CVE-2022-20824 | 1 Cisco | 288 Mds 9506, Mds 9506 Firmware, Mds 9513 and 285 more | 2024-11-21 | 8.8 High |
A vulnerability in the Cisco Discovery Protocol feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code with root privileges or cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper input validation of specific values that are within a Cisco Discovery Protocol message. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to execute arbitrary code with root privileges or cause the Cisco Discovery Protocol process to crash and restart multiple times, which would cause the affected device to reload, resulting in a DoS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). |