Filtered by NVD-CWE-noinfo
Total 34116 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-35950 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/client: Fully protect modes[] with dev->mode_config.mutex The modes[] array contains pointers to modes on the connectors' mode lists, which are protected by dev->mode_config.mutex. Thus we need to extend modes[] the same protection or by the time we use it the elements may already be pointing to freed/reused memory.
CVE-2024-35947 4 Debian, Fedoraproject, Linux and 1 more 5 Debian Linux, Fedora, Linux Kernel and 2 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dyndbg: fix old BUG_ON in >control parser Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't really look), lets make sure by removing it, doing pr_err and return -EINVAL instead.
CVE-2024-35944 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host() Syzkaller hit 'WARNING in dg_dispatch_as_host' bug. memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg" at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24) WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237 dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237 Some code commentry, based on my understanding: 544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) /// This is 24 + payload_size memcpy(&dg_info->msg, dg, dg_size); Destination = dg_info->msg ---> this is a 24 byte structure(struct vmci_datagram) Source = dg --> this is a 24 byte structure (struct vmci_datagram) Size = dg_size = 24 + payload_size {payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32. 35 struct delayed_datagram_info { 36 struct datagram_entry *entry; 37 struct work_struct work; 38 bool in_dg_host_queue; 39 /* msg and msg_payload must be together. */ 40 struct vmci_datagram msg; 41 u8 msg_payload[]; 42 }; So those extra bytes of payload are copied into msg_payload[], a run time warning is seen while fuzzing with Syzkaller. One possible way to fix the warning is to split the memcpy() into two parts -- one -- direct assignment of msg and second taking care of payload. Gustavo quoted: "Under FORTIFY_SOURCE we should not copy data across multiple members in a structure."
CVE-2024-35939 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: dma-direct: Leak pages on dma_set_decrypted() failure On TDX it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. DMA could free decrypted/shared pages if dma_set_decrypted() fails. This should be a rare case. Just leak the pages in this case instead of freeing them.
CVE-2024-35936 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks() The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption, as it could be caused only by two impossible conditions: - at first the search key is set up to look for a chunk tree item, with offset -1, this is an inexact search and the key->offset will contain the correct offset upon a successful search, a valid chunk tree item cannot have an offset -1 - after first successful search, the found_key corresponds to a chunk item, the offset is decremented by 1 before the next loop, it's impossible to find a chunk item there due to alignment and size constraints
CVE-2024-35934 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list() Many syzbot reports show extreme rtnl pressure, and many of them hint that smc acquires rtnl in netns creation for no good reason [1] This patch returns early from smc_pnet_net_init() if there is no netdevice yet. I am not even sure why smc_pnet_create_pnetids_list() even exists, because smc_pnet_netdev_event() is also calling smc_pnet_add_base_pnetid() when handling NETDEV_UP event. [1] extract of typical syzbot reports 2 locks held by syz-executor.3/12252: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12253: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12257: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12261: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.0/12265: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.3/12268: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12271: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12274: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12280: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
CVE-2024-35875 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/coco: Require seeding RNG with RDRAND on CoCo systems There are few uses of CoCo that don't rely on working cryptography and hence a working RNG. Unfortunately, the CoCo threat model means that the VM host cannot be trusted and may actively work against guests to extract secrets or manipulate computation. Since a malicious host can modify or observe nearly all inputs to guests, the only remaining source of entropy for CoCo guests is RDRAND. If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole is meant to gracefully continue on gathering entropy from other sources, but since there aren't other sources on CoCo, this is catastrophic. This is mostly a concern at boot time when initially seeding the RNG, as after that the consequences of a broken RDRAND are much more theoretical. So, try at boot to seed the RNG using 256 bits of RDRAND output. If this fails, panic(). This will also trigger if the system is booted without RDRAND, as RDRAND is essential for a safe CoCo boot. Add this deliberately to be "just a CoCo x86 driver feature" and not part of the RNG itself. Many device drivers and platforms have some desire to contribute something to the RNG, and add_device_randomness() is specifically meant for this purpose. Any driver can call it with seed data of any quality, or even garbage quality, and it can only possibly make the quality of the RNG better or have no effect, but can never make it worse. Rather than trying to build something into the core of the RNG, consider the particular CoCo issue just a CoCo issue, and therefore separate it all out into driver (well, arch/platform) code. [ bp: Massage commit message. ]
CVE-2024-35822 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: udc: remove warning when queue disabled ep It is possible trigger below warning message from mass storage function, WARNING: CPU: 6 PID: 3839 at drivers/usb/gadget/udc/core.c:294 usb_ep_queue+0x7c/0x104 pc : usb_ep_queue+0x7c/0x104 lr : fsg_main_thread+0x494/0x1b3c Root cause is mass storage function try to queue request from main thread, but other thread may already disable ep when function disable. As there is no function failure in the driver, in order to avoid effort to fix warning, change WARN_ON_ONCE() in usb_ep_queue() to pr_debug().
CVE-2024-35803 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/efistub: Call mixed mode boot services on the firmware's stack Normally, the EFI stub calls into the EFI boot services using the stack that was live when the stub was entered. According to the UEFI spec, this stack needs to be at least 128k in size - this might seem large but all asynchronous processing and event handling in EFI runs from the same stack and so quite a lot of space may be used in practice. In mixed mode, the situation is a bit different: the bootloader calls the 32-bit EFI stub entry point, which calls the decompressor's 32-bit entry point, where the boot stack is set up, using a fixed allocation of 16k. This stack is still in use when the EFI stub is started in 64-bit mode, and so all calls back into the EFI firmware will be using the decompressor's limited boot stack. Due to the placement of the boot stack right after the boot heap, any stack overruns have gone unnoticed. However, commit 5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code") moved the definition of the boot heap into C code, and now the boot stack is placed right at the base of BSS, where any overruns will corrupt the end of the .data section. While it would be possible to work around this by increasing the size of the boot stack, doing so would affect all x86 systems, and mixed mode systems are a tiny (and shrinking) fraction of the x86 installed base. So instead, record the firmware stack pointer value when entering from the 32-bit firmware, and switch to this stack every time a EFI boot service call is made.
CVE-2024-27056 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: ensure offloading TID queue exists The resume code path assumes that the TX queue for the offloading TID has been configured. At resume time it then tries to sync the write pointer as it may have been updated by the firmware. In the unusual event that no packets have been send on TID 0, the queue will not have been allocated and this causes a crash. Fix this by ensuring the queue exist at suspend time.
CVE-2024-26907 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix fortify source warning while accessing Eth segment ------------[ cut here ]------------ memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2) WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy [last unloaded: mlx_compat(OE)] CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7 RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8 R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80 FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x72/0x90 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] ? __warn+0x8d/0x160 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] ? report_bug+0x1bb/0x1d0 ? handle_bug+0x46/0x90 ? exc_invalid_op+0x19/0x80 ? asm_exc_invalid_op+0x1b/0x20 ? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib] ipoib_send+0x2ec/0x770 [ib_ipoib] ipoib_start_xmit+0x5a0/0x770 [ib_ipoib] dev_hard_start_xmit+0x8e/0x1e0 ? validate_xmit_skb_list+0x4d/0x80 sch_direct_xmit+0x116/0x3a0 __dev_xmit_skb+0x1fd/0x580 __dev_queue_xmit+0x284/0x6b0 ? _raw_spin_unlock_irq+0xe/0x50 ? __flush_work.isra.0+0x20d/0x370 ? push_pseudo_header+0x17/0x40 [ib_ipoib] neigh_connected_output+0xcd/0x110 ip_finish_output2+0x179/0x480 ? __smp_call_single_queue+0x61/0xa0 __ip_finish_output+0xc3/0x190 ip_finish_output+0x2e/0xf0 ip_output+0x78/0x110 ? __pfx_ip_finish_output+0x10/0x10 ip_local_out+0x64/0x70 __ip_queue_xmit+0x18a/0x460 ip_queue_xmit+0x15/0x30 __tcp_transmit_skb+0x914/0x9c0 tcp_write_xmit+0x334/0x8d0 tcp_push_one+0x3c/0x60 tcp_sendmsg_locked+0x2e1/0xac0 tcp_sendmsg+0x2d/0x50 inet_sendmsg+0x43/0x90 sock_sendmsg+0x68/0x80 sock_write_iter+0x93/0x100 vfs_write+0x326/0x3c0 ksys_write+0xbd/0xf0 ? do_syscall_64+0x69/0x90 __x64_sys_write+0x19/0x30 do_syscall_ ---truncated---
CVE-2024-26906 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace: <TASK> ? copy_from_kernel_nofault+0x6f/0x110 bpf_probe_read_kernel+0x1d/0x50 bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d trace_call_bpf+0xc5/0x1c0 perf_call_bpf_enter.isra.0+0x69/0xb0 perf_syscall_enter+0x13e/0x200 syscall_trace_enter+0x188/0x1c0 do_syscall_64+0xb5/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ...... ---[ end trace 0000000000000000 ]--- The oops is triggered when: 1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall page and invokes copy_from_kernel_nofault() which in turn calls __get_user_asm(). 2) Because the vsyscall page address is not readable from kernel space, a page fault exception is triggered accordingly. 3) handle_page_fault() considers the vsyscall page address as a user space address instead of a kernel space address. This results in the fix-up setup by bpf not being applied and a page_fault_oops() is invoked due to SMAP. Considering handle_page_fault() has already considered the vsyscall page address as a userspace address, fix the problem by disallowing vsyscall page read for copy_from_kernel_nofault().
CVE-2024-26844 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: Fix WARNING in _copy_from_iter Syzkaller reports a warning in _copy_from_iter because an iov_iter is supposedly used in the wrong direction. The reason is that syzcaller managed to generate a request with a transfer direction of SG_DXFER_TO_FROM_DEV. This instructs the kernel to copy user buffers into the kernel, read into the copied buffers and then copy the data back to user space. Thus the iovec is used in both directions. Detect this situation in the block layer and construct a new iterator with the correct direction for the copy-in.
CVE-2024-26773 3 Debian, Linux, Redhat 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found() Determine if the group block bitmap is corrupted before using ac_b_ex in ext4_mb_try_best_found() to avoid allocating blocks from a group with a corrupted block bitmap in the following concurrency and making the situation worse. ext4_mb_regular_allocator ext4_lock_group(sb, group) ext4_mb_good_group // check if the group bbitmap is corrupted ext4_mb_complex_scan_group // Scan group gets ac_b_ex but doesn't use it ext4_unlock_group(sb, group) ext4_mark_group_bitmap_corrupted(group) // The block bitmap was corrupted during // the group unlock gap. ext4_mb_try_best_found ext4_lock_group(ac->ac_sb, group) ext4_mb_use_best_found mb_mark_used // Allocating blocks in block bitmap corrupted group
CVE-2024-26772 3 Debian, Linux, Redhat 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal() Places the logic for checking if the group's block bitmap is corrupt under the protection of the group lock to avoid allocating blocks from the group with a corrupted block bitmap.
CVE-2024-26764 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: fs/aio: Restrict kiocb_set_cancel_fn() to I/O submitted via libaio If kiocb_set_cancel_fn() is called for I/O submitted via io_uring, the following kernel warning appears: WARNING: CPU: 3 PID: 368 at fs/aio.c:598 kiocb_set_cancel_fn+0x9c/0xa8 Call trace: kiocb_set_cancel_fn+0x9c/0xa8 ffs_epfile_read_iter+0x144/0x1d0 io_read+0x19c/0x498 io_issue_sqe+0x118/0x27c io_submit_sqes+0x25c/0x5fc __arm64_sys_io_uring_enter+0x104/0xab0 invoke_syscall+0x58/0x11c el0_svc_common+0xb4/0xf4 do_el0_svc+0x2c/0xb0 el0_svc+0x2c/0xa4 el0t_64_sync_handler+0x68/0xb4 el0t_64_sync+0x1a4/0x1a8 Fix this by setting the IOCB_AIO_RW flag for read and write I/O that is submitted by libaio.
CVE-2023-53443 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak In arizona_clk32k_enable(), we should use pm_runtime_resume_and_get() as pm_runtime_get_sync() will increase the refcnt even when it returns an error.
CVE-2023-53438 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/MCE: Always save CS register on AMD Zen IF Poison errors The Instruction Fetch (IF) units on current AMD Zen-based systems do not guarantee a synchronous #MC is delivered for poison consumption errors. Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the microarchitecture does guarantee that the exception is delivered within the same context. In other words, the exact rIP is not known, but the context is known to not have changed. There is no architecturally-defined method to determine this behavior. The Code Segment (CS) register is always valid on such IF unit poison errors regardless of the value of MCG_STATUS[EIPV|RIPV]. Add a quirk to save the CS register for poison consumption from the IF unit banks. This is needed to properly determine the context of the error. Otherwise, the severity grading function will assume the context is IN_KERNEL due to the m->cs value being 0 (the initialized value). This leads to unnecessary kernel panics on data poison errors due to the kernel believing the poison consumption occurred in kernel context.
CVE-2023-53437 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Handle cameras with invalid descriptors If the source entity does not contain any pads, do not create a link.
CVE-2023-53429 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't check PageError in __extent_writepage __extent_writepage currenly sets PageError whenever any error happens, and the also checks for PageError to decide if to call error handling. This leads to very unclear responsibility for cleaning up on errors. In the VM and generic writeback helpers the basic idea is that once I/O is fired off all error handling responsibility is delegated to the end I/O handler. But if that end I/O handler sets the PageError bit, and the submitter checks it, the bit could in some cases leak into the submission context for fast enough I/O. Fix this by simply not checking PageError and just using the local ret variable to check for submission errors. This also fundamentally solves the long problem documented in a comment in __extent_writepage by never leaking the error bit into the submission context.