Filtered by CWE-667
Total 515 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-46681 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pktgen: use cpus_read_lock() in pg_net_init() I have seen the WARN_ON(smp_processor_id() != cpu) firing in pktgen_thread_worker() during tests. We must use cpus_read_lock()/cpus_read_unlock() around the for_each_online_cpu(cpu) loop. While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood.
CVE-2024-45029 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: Do not mark ACPI devices as irq safe On ACPI machines, the tegra i2c module encounters an issue due to a mutex being called inside a spinlock. This leads to the following bug: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:585 ... Call trace: __might_sleep __mutex_lock_common mutex_lock_nested acpi_subsys_runtime_resume rpm_resume tegra_i2c_xfer The problem arises because during __pm_runtime_resume(), the spinlock &dev->power.lock is acquired before rpm_resume() is called. Later, rpm_resume() invokes acpi_subsys_runtime_resume(), which relies on mutexes, triggering the error. To address this issue, devices on ACPI are now marked as not IRQ-safe, considering the dependency of acpi_subsys_runtime_resume() on mutexes.
CVE-2024-45024 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix hugetlb vs. core-mm PT locking We recently made GUP's common page table walking code to also walk hugetlb VMAs without most hugetlb special-casing, preparing for the future of having less hugetlb-specific page table walking code in the codebase. Turns out that we missed one page table locking detail: page table locking for hugetlb folios that are not mapped using a single PMD/PUD. Assume we have hugetlb folio that spans multiple PTEs (e.g., 64 KiB hugetlb folios on arm64 with 4 KiB base page size). GUP, as it walks the page tables, will perform a pte_offset_map_lock() to grab the PTE table lock. However, hugetlb that concurrently modifies these page tables would actually grab the mm->page_table_lock: with USE_SPLIT_PTE_PTLOCKS, the locks would differ. Something similar can happen right now with hugetlb folios that span multiple PMDs when USE_SPLIT_PMD_PTLOCKS. This issue can be reproduced [1], for example triggering: [ 3105.936100] ------------[ cut here ]------------ [ 3105.939323] WARNING: CPU: 31 PID: 2732 at mm/gup.c:142 try_grab_folio+0x11c/0x188 [ 3105.944634] Modules linked in: [...] [ 3105.974841] CPU: 31 PID: 2732 Comm: reproducer Not tainted 6.10.0-64.eln141.aarch64 #1 [ 3105.980406] Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-4.fc40 05/24/2024 [ 3105.986185] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3105.991108] pc : try_grab_folio+0x11c/0x188 [ 3105.994013] lr : follow_page_pte+0xd8/0x430 [ 3105.996986] sp : ffff80008eafb8f0 [ 3105.999346] x29: ffff80008eafb900 x28: ffffffe8d481f380 x27: 00f80001207cff43 [ 3106.004414] x26: 0000000000000001 x25: 0000000000000000 x24: ffff80008eafba48 [ 3106.009520] x23: 0000ffff9372f000 x22: ffff7a54459e2000 x21: ffff7a546c1aa978 [ 3106.014529] x20: ffffffe8d481f3c0 x19: 0000000000610041 x18: 0000000000000001 [ 3106.019506] x17: 0000000000000001 x16: ffffffffffffffff x15: 0000000000000000 [ 3106.024494] x14: ffffb85477fdfe08 x13: 0000ffff9372ffff x12: 0000000000000000 [ 3106.029469] x11: 1fffef4a88a96be1 x10: ffff7a54454b5f0c x9 : ffffb854771b12f0 [ 3106.034324] x8 : 0008000000000000 x7 : ffff7a546c1aa980 x6 : 0008000000000080 [ 3106.038902] x5 : 00000000001207cf x4 : 0000ffff9372f000 x3 : ffffffe8d481f000 [ 3106.043420] x2 : 0000000000610041 x1 : 0000000000000001 x0 : 0000000000000000 [ 3106.047957] Call trace: [ 3106.049522] try_grab_folio+0x11c/0x188 [ 3106.051996] follow_pmd_mask.constprop.0.isra.0+0x150/0x2e0 [ 3106.055527] follow_page_mask+0x1a0/0x2b8 [ 3106.058118] __get_user_pages+0xf0/0x348 [ 3106.060647] faultin_page_range+0xb0/0x360 [ 3106.063651] do_madvise+0x340/0x598 Let's make huge_pte_lockptr() effectively use the same PT locks as any core-mm page table walker would. Add ptep_lockptr() to obtain the PTE page table lock using a pte pointer -- unfortunately we cannot convert pte_lockptr() because virt_to_page() doesn't work with kmap'ed page tables we can have with CONFIG_HIGHPTE. Handle CONFIG_PGTABLE_LEVELS correctly by checking in reverse order, such that when e.g., CONFIG_PGTABLE_LEVELS==2 with PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE will work as expected. Document why that works. There is one ugly case: powerpc 8xx, whereby we have an 8 MiB hugetlb folio being mapped using two PTE page tables. While hugetlb wants to take the PMD table lock, core-mm would grab the PTE table lock of one of both PTE page tables. In such corner cases, we have to make sure that both locks match, which is (fortunately!) currently guaranteed for 8xx as it does not support SMP and consequently doesn't use split PT locks. [1] https://lore.kernel.org/all/1bbfcc7f-f222-45a5-ac44-c5a1381c596d@redhat.com/
CVE-2024-45019 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Take state lock during tx timeout reporter mlx5e_safe_reopen_channels() requires the state lock taken. The referenced changed in the Fixes tag removed the lock to fix another issue. This patch adds it back but at a later point (when calling mlx5e_safe_reopen_channels()) to avoid the deadlock referenced in the Fixes tag.
CVE-2024-45003 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: vfs: Don't evict inode under the inode lru traversing context The inode reclaiming process(See function prune_icache_sb) collects all reclaimable inodes and mark them with I_FREEING flag at first, at that time, other processes will be stuck if they try getting these inodes (See function find_inode_fast), then the reclaiming process destroy the inodes by function dispose_list(). Some filesystems(eg. ext4 with ea_inode feature, ubifs with xattr) may do inode lookup in the inode evicting callback function, if the inode lookup is operated under the inode lru traversing context, deadlock problems may happen. Case 1: In function ext4_evict_inode(), the ea inode lookup could happen if ea_inode feature is enabled, the lookup process will be stuck under the evicting context like this: 1. File A has inode i_reg and an ea inode i_ea 2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea 3. Then, following three processes running like this: PA PB echo 2 > /proc/sys/vm/drop_caches shrink_slab prune_dcache_sb // i_reg is added into lru, lru->i_ea->i_reg prune_icache_sb list_lru_walk_one inode_lru_isolate i_ea->i_state |= I_FREEING // set inode state inode_lru_isolate __iget(i_reg) spin_unlock(&i_reg->i_lock) spin_unlock(lru_lock) rm file A i_reg->nlink = 0 iput(i_reg) // i_reg->nlink is 0, do evict ext4_evict_inode ext4_xattr_delete_inode ext4_xattr_inode_dec_ref_all ext4_xattr_inode_iget ext4_iget(i_ea->i_ino) iget_locked find_inode_fast __wait_on_freeing_inode(i_ea) ----→ AA deadlock dispose_list // cannot be executed by prune_icache_sb wake_up_bit(&i_ea->i_state) Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file deleting process holds BASEHD's wbuf->io_mutex while getting the xattr inode, which could race with inode reclaiming process(The reclaiming process could try locking BASEHD's wbuf->io_mutex in inode evicting function), then an ABBA deadlock problem would happen as following: 1. File A has inode ia and a xattr(with inode ixa), regular file B has inode ib and a xattr. 2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa 3. Then, following three processes running like this: PA PB PC echo 2 > /proc/sys/vm/drop_caches shrink_slab prune_dcache_sb // ib and ia are added into lru, lru->ixa->ib->ia prune_icache_sb list_lru_walk_one inode_lru_isolate ixa->i_state |= I_FREEING // set inode state inode_lru_isolate __iget(ib) spin_unlock(&ib->i_lock) spin_unlock(lru_lock) rm file B ib->nlink = 0 rm file A iput(ia) ubifs_evict_inode(ia) ubifs_jnl_delete_inode(ia) ubifs_jnl_write_inode(ia) make_reservation(BASEHD) // Lock wbuf->io_mutex ubifs_iget(ixa->i_ino) iget_locked find_inode_fast __wait_on_freeing_inode(ixa) | iput(ib) // ib->nlink is 0, do evict | ubifs_evict_inode | ubifs_jnl_delete_inode(ib) ↓ ubifs_jnl_write_inode ABBA deadlock ←-----make_reservation(BASEHD) dispose_list // cannot be executed by prune_icache_sb wake_up_bit(&ixa->i_state) Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING to pin the inode in memory while inode_lru_isolate( ---truncated---
CVE-2024-44995 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix a deadlock problem when config TC during resetting When config TC during the reset process, may cause a deadlock, the flow is as below: pf reset start │ ▼ ...... setup tc │ │ ▼ ▼ DOWN: napi_disable() napi_disable()(skip) │ │ │ ▼ ▼ ...... ...... │ │ ▼ │ napi_enable() │ ▼ UINIT: netif_napi_del() │ ▼ ...... │ ▼ INIT: netif_napi_add() │ ▼ ...... global reset start │ │ ▼ ▼ UP: napi_enable()(skip) ...... │ │ ▼ ▼ ...... napi_disable() In reset process, the driver will DOWN the port and then UINIT, in this case, the setup tc process will UP the port before UINIT, so cause the problem. Adds a DOWN process in UINIT to fix it.
CVE-2024-44957 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Switch from mutex to spinlock for irqfds irqfd_wakeup() gets EPOLLHUP, when it is called by eventfd_release() by way of wake_up_poll(&ctx->wqh, EPOLLHUP), which gets called under spin_lock_irqsave(). We can't use a mutex here as it will lead to a deadlock. Fix it by switching over to a spin lock.
CVE-2024-44956 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/preempt_fence: enlarge the fence critical section It is really easy to introduce subtle deadlocks in preempt_fence_work_func() since we operate on single global ordered-wq for signalling our preempt fences behind the scenes, so even though we signal a particular fence, everything in the callback should be in the fence critical section, since blocking in the callback will prevent other published fences from signalling. If we enlarge the fence critical section to cover the entire callback, then lockdep should be able to understand this better, and complain if we grab a sensitive lock like vm->lock, which is also held when waiting on preempt fences.
CVE-2024-44953 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix deadlock during RTC update There is a deadlock when runtime suspend waits for the flush of RTC work, and the RTC work calls ufshcd_rpm_get_sync() to wait for runtime resume. Here is deadlock backtrace: kworker/0:1 D 4892.876354 10 10971 4859 0x4208060 0x8 10 0 120 670730152367 ptr f0ffff80c2e40000 0 1 0x00000001 0x000000ff 0x000000ff 0x000000ff <ffffffee5e71ddb0> __switch_to+0x1a8/0x2d4 <ffffffee5e71e604> __schedule+0x684/0xa98 <ffffffee5e71ea60> schedule+0x48/0xc8 <ffffffee5e725f78> schedule_timeout+0x48/0x170 <ffffffee5e71fb74> do_wait_for_common+0x108/0x1b0 <ffffffee5e71efe0> wait_for_completion+0x44/0x60 <ffffffee5d6de968> __flush_work+0x39c/0x424 <ffffffee5d6decc0> __cancel_work_sync+0xd8/0x208 <ffffffee5d6dee2c> cancel_delayed_work_sync+0x14/0x28 <ffffffee5e2551b8> __ufshcd_wl_suspend+0x19c/0x480 <ffffffee5e255fb8> ufshcd_wl_runtime_suspend+0x3c/0x1d4 <ffffffee5dffd80c> scsi_runtime_suspend+0x78/0xc8 <ffffffee5df93580> __rpm_callback+0x94/0x3e0 <ffffffee5df90b0c> rpm_suspend+0x2d4/0x65c <ffffffee5df91448> __pm_runtime_suspend+0x80/0x114 <ffffffee5dffd95c> scsi_runtime_idle+0x38/0x6c <ffffffee5df912f4> rpm_idle+0x264/0x338 <ffffffee5df90f14> __pm_runtime_idle+0x80/0x110 <ffffffee5e24ce44> ufshcd_rtc_work+0x128/0x1e4 <ffffffee5d6e3a40> process_one_work+0x26c/0x650 <ffffffee5d6e65c8> worker_thread+0x260/0x3d8 <ffffffee5d6edec8> kthread+0x110/0x134 <ffffffee5d616b18> ret_from_fork+0x10/0x20 Skip updating RTC if RPM state is not RPM_ACTIVE.
CVE-2024-43872 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup under heavy CEQE load CEQEs are handled in interrupt handler currently. This may cause the CPU core staying in interrupt context too long and lead to soft lockup under heavy load. Handle CEQEs in BH workqueue and set an upper limit for the number of CEQE handled by a single call of work handler.
CVE-2024-43862 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: wan: fsl_qmc_hdlc: Convert carrier_lock spinlock to a mutex The carrier_lock spinlock protects the carrier detection. While it is held, framer_get_status() is called which in turn takes a mutex. This is not correct and can lead to a deadlock. A run with PROVE_LOCKING enabled detected the issue: [ BUG: Invalid wait context ] ... c204ddbc (&framer->mutex){+.+.}-{3:3}, at: framer_get_status+0x40/0x78 other info that might help us debug this: context-{4:4} 2 locks held by ifconfig/146: #0: c0926a38 (rtnl_mutex){+.+.}-{3:3}, at: devinet_ioctl+0x12c/0x664 #1: c2006a40 (&qmc_hdlc->carrier_lock){....}-{2:2}, at: qmc_hdlc_framer_set_carrier+0x30/0x98 Avoid the spinlock usage and convert carrier_lock to a mutex.
CVE-2024-43849 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pdr: protect locator_addr with the main mutex If the service locator server is restarted fast enough, the PDR can rewrite locator_addr fields concurrently. Protect them by placing modification of those fields under the main pdr->lock.
CVE-2024-43098 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i3c: Use i3cdev->desc->info instead of calling i3c_device_get_info() to avoid deadlock A deadlock may happen since the i3c_master_register() acquires &i3cbus->lock twice. See the log below. Use i3cdev->desc->info instead of calling i3c_device_info() to avoid acquiring the lock twice. v2: - Modified the title and commit message ============================================ WARNING: possible recursive locking detected 6.11.0-mainline -------------------------------------------- init/1 is trying to acquire lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_bus_normaluse_lock but task is already holding lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&i3cbus->lock); lock(&i3cbus->lock); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by init/1: #0: fcffff809b6798f8 (&dev->mutex){....}-{3:3}, at: __driver_attach #1: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register stack backtrace: CPU: 6 UID: 0 PID: 1 Comm: init Call trace: dump_backtrace+0xfc/0x17c show_stack+0x18/0x28 dump_stack_lvl+0x40/0xc0 dump_stack+0x18/0x24 print_deadlock_bug+0x388/0x390 __lock_acquire+0x18bc/0x32ec lock_acquire+0x134/0x2b0 down_read+0x50/0x19c i3c_bus_normaluse_lock+0x14/0x24 i3c_device_get_info+0x24/0x58 i3c_device_uevent+0x34/0xa4 dev_uevent+0x310/0x384 kobject_uevent_env+0x244/0x414 kobject_uevent+0x14/0x20 device_add+0x278/0x460 device_register+0x20/0x34 i3c_master_register_new_i3c_devs+0x78/0x154 i3c_master_register+0x6a0/0x6d4 mtk_i3c_master_probe+0x3b8/0x4d8 platform_probe+0xa0/0xe0 really_probe+0x114/0x454 __driver_probe_device+0xa0/0x15c driver_probe_device+0x3c/0x1ac __driver_attach+0xc4/0x1f0 bus_for_each_dev+0x104/0x160 driver_attach+0x24/0x34 bus_add_driver+0x14c/0x294 driver_register+0x68/0x104 __platform_driver_register+0x20/0x30 init_module+0x20/0xfe4 do_one_initcall+0x184/0x464 do_init_module+0x58/0x1ec load_module+0xefc/0x10c8 __arm64_sys_finit_module+0x238/0x33c invoke_syscall+0x58/0x10c el0_svc_common+0xa8/0xdc do_el0_svc+0x1c/0x28 el0_svc+0x50/0xac el0t_64_sync_handler+0x70/0xbc el0t_64_sync+0x1a8/0x1ac
CVE-2024-42315 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: exfat: fix potential deadlock on __exfat_get_dentry_set When accessing a file with more entries than ES_MAX_ENTRY_NUM, the bh-array is allocated in __exfat_get_entry_set. The problem is that the bh-array is allocated with GFP_KERNEL. It does not make sense. In the following cases, a deadlock for sbi->s_lock between the two processes may occur. CPU0 CPU1 ---- ---- kswapd balance_pgdat lock(fs_reclaim) exfat_iterate lock(&sbi->s_lock) exfat_readdir exfat_get_uniname_from_ext_entry exfat_get_dentry_set __exfat_get_dentry_set kmalloc_array ... lock(fs_reclaim) ... evict exfat_evict_inode lock(&sbi->s_lock) To fix this, let's allocate bh-array with GFP_NOFS.
CVE-2024-42294 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix deadlock between sd_remove & sd_release Our test report the following hung task: [ 2538.459400] INFO: task "kworker/0:0":7 blocked for more than 188 seconds. [ 2538.459427] Call trace: [ 2538.459430] __switch_to+0x174/0x338 [ 2538.459436] __schedule+0x628/0x9c4 [ 2538.459442] schedule+0x7c/0xe8 [ 2538.459447] schedule_preempt_disabled+0x24/0x40 [ 2538.459453] __mutex_lock+0x3ec/0xf04 [ 2538.459456] __mutex_lock_slowpath+0x14/0x24 [ 2538.459459] mutex_lock+0x30/0xd8 [ 2538.459462] del_gendisk+0xdc/0x350 [ 2538.459466] sd_remove+0x30/0x60 [ 2538.459470] device_release_driver_internal+0x1c4/0x2c4 [ 2538.459474] device_release_driver+0x18/0x28 [ 2538.459478] bus_remove_device+0x15c/0x174 [ 2538.459483] device_del+0x1d0/0x358 [ 2538.459488] __scsi_remove_device+0xa8/0x198 [ 2538.459493] scsi_forget_host+0x50/0x70 [ 2538.459497] scsi_remove_host+0x80/0x180 [ 2538.459502] usb_stor_disconnect+0x68/0xf4 [ 2538.459506] usb_unbind_interface+0xd4/0x280 [ 2538.459510] device_release_driver_internal+0x1c4/0x2c4 [ 2538.459514] device_release_driver+0x18/0x28 [ 2538.459518] bus_remove_device+0x15c/0x174 [ 2538.459523] device_del+0x1d0/0x358 [ 2538.459528] usb_disable_device+0x84/0x194 [ 2538.459532] usb_disconnect+0xec/0x300 [ 2538.459537] hub_event+0xb80/0x1870 [ 2538.459541] process_scheduled_works+0x248/0x4dc [ 2538.459545] worker_thread+0x244/0x334 [ 2538.459549] kthread+0x114/0x1bc [ 2538.461001] INFO: task "fsck.":15415 blocked for more than 188 seconds. [ 2538.461014] Call trace: [ 2538.461016] __switch_to+0x174/0x338 [ 2538.461021] __schedule+0x628/0x9c4 [ 2538.461025] schedule+0x7c/0xe8 [ 2538.461030] blk_queue_enter+0xc4/0x160 [ 2538.461034] blk_mq_alloc_request+0x120/0x1d4 [ 2538.461037] scsi_execute_cmd+0x7c/0x23c [ 2538.461040] ioctl_internal_command+0x5c/0x164 [ 2538.461046] scsi_set_medium_removal+0x5c/0xb0 [ 2538.461051] sd_release+0x50/0x94 [ 2538.461054] blkdev_put+0x190/0x28c [ 2538.461058] blkdev_release+0x28/0x40 [ 2538.461063] __fput+0xf8/0x2a8 [ 2538.461066] __fput_sync+0x28/0x5c [ 2538.461070] __arm64_sys_close+0x84/0xe8 [ 2538.461073] invoke_syscall+0x58/0x114 [ 2538.461078] el0_svc_common+0xac/0xe0 [ 2538.461082] do_el0_svc+0x1c/0x28 [ 2538.461087] el0_svc+0x38/0x68 [ 2538.461090] el0t_64_sync_handler+0x68/0xbc [ 2538.461093] el0t_64_sync+0x1a8/0x1ac T1: T2: sd_remove del_gendisk __blk_mark_disk_dead blk_freeze_queue_start ++q->mq_freeze_depth bdev_release mutex_lock(&disk->open_mutex) sd_release scsi_execute_cmd blk_queue_enter wait_event(!q->mq_freeze_depth) mutex_lock(&disk->open_mutex) SCSI does not set GD_OWNS_QUEUE, so QUEUE_FLAG_DYING is not set in this scenario. This is a classic ABBA deadlock. To fix the deadlock, make sure we don't try to acquire disk->open_mutex after freezing the queue.
CVE-2024-42268 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix missing lock on sync reset reload On sync reset reload work, when remote host updates devlink on reload actions performed on that host, it misses taking devlink lock before calling devlink_remote_reload_actions_performed() which results in triggering lock assert like the following: WARNING: CPU: 4 PID: 1164 at net/devlink/core.c:261 devl_assert_locked+0x3e/0x50 … CPU: 4 PID: 1164 Comm: kworker/u96:6 Tainted: G S W 6.10.0-rc2+ #116 Hardware name: Supermicro SYS-2028TP-DECTR/X10DRT-PT, BIOS 2.0 12/18/2015 Workqueue: mlx5_fw_reset_events mlx5_sync_reset_reload_work [mlx5_core] RIP: 0010:devl_assert_locked+0x3e/0x50 … Call Trace: <TASK> ? __warn+0xa4/0x210 ? devl_assert_locked+0x3e/0x50 ? report_bug+0x160/0x280 ? handle_bug+0x3f/0x80 ? exc_invalid_op+0x17/0x40 ? asm_exc_invalid_op+0x1a/0x20 ? devl_assert_locked+0x3e/0x50 devlink_notify+0x88/0x2b0 ? mlx5_attach_device+0x20c/0x230 [mlx5_core] ? __pfx_devlink_notify+0x10/0x10 ? process_one_work+0x4b6/0xbb0 process_one_work+0x4b6/0xbb0 […]
CVE-2024-42266 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: make cow_file_range_inline() honor locked_page on error The btrfs buffered write path runs through __extent_writepage() which has some tricky return value handling for writepage_delalloc(). Specifically, when that returns 1, we exit, but for other return values we continue and end up calling btrfs_folio_end_all_writers(). If the folio has been unlocked (note that we check the PageLocked bit at the start of __extent_writepage()), this results in an assert panic like this one from syzbot: BTRFS: error (device loop0 state EAL) in free_log_tree:3267: errno=-5 IO failure BTRFS warning (device loop0 state EAL): Skipping commit of aborted transaction. BTRFS: error (device loop0 state EAL) in cleanup_transaction:2018: errno=-5 IO failure assertion failed: folio_test_locked(folio), in fs/btrfs/subpage.c:871 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:871! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 PID: 5090 Comm: syz-executor225 Not tainted 6.10.0-syzkaller-05505-gb1bc554e009e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/27/2024 RIP: 0010:btrfs_folio_end_all_writers+0x55b/0x610 fs/btrfs/subpage.c:871 Code: e9 d3 fb ff ff e8 25 22 c2 fd 48 c7 c7 c0 3c 0e 8c 48 c7 c6 80 3d 0e 8c 48 c7 c2 60 3c 0e 8c b9 67 03 00 00 e8 66 47 ad 07 90 <0f> 0b e8 6e 45 b0 07 4c 89 ff be 08 00 00 00 e8 21 12 25 fe 4c 89 RSP: 0018:ffffc900033d72e0 EFLAGS: 00010246 RAX: 0000000000000045 RBX: 00fff0000000402c RCX: 663b7a08c50a0a00 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffffc900033d73b0 R08: ffffffff8176b98c R09: 1ffff9200067adfc R10: dffffc0000000000 R11: fffff5200067adfd R12: 0000000000000001 R13: dffffc0000000000 R14: 0000000000000000 R15: ffffea0001cbee80 FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5f076012f8 CR3: 000000000e134000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __extent_writepage fs/btrfs/extent_io.c:1597 [inline] extent_write_cache_pages fs/btrfs/extent_io.c:2251 [inline] btrfs_writepages+0x14d7/0x2760 fs/btrfs/extent_io.c:2373 do_writepages+0x359/0x870 mm/page-writeback.c:2656 filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397 __filemap_fdatawrite_range mm/filemap.c:430 [inline] __filemap_fdatawrite mm/filemap.c:436 [inline] filemap_flush+0xdf/0x130 mm/filemap.c:463 btrfs_release_file+0x117/0x130 fs/btrfs/file.c:1547 __fput+0x24a/0x8a0 fs/file_table.c:422 task_work_run+0x24f/0x310 kernel/task_work.c:222 exit_task_work include/linux/task_work.h:40 [inline] do_exit+0xa2f/0x27f0 kernel/exit.c:877 do_group_exit+0x207/0x2c0 kernel/exit.c:1026 __do_sys_exit_group kernel/exit.c:1037 [inline] __se_sys_exit_group kernel/exit.c:1035 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1035 x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f5f075b70c9 Code: Unable to access opcode bytes at 0x7f5f075b709f. I was hitting the same issue by doing hundreds of accelerated runs of generic/475, which also hits IO errors by design. I instrumented that reproducer with bpftrace and found that the undesirable folio_unlock was coming from the following callstack: folio_unlock+5 __process_pages_contig+475 cow_file_range_inline.constprop.0+230 cow_file_range+803 btrfs_run_delalloc_range+566 writepage_delalloc+332 __extent_writepage # inlined in my stacktrace, but I added it here extent_write_cache_pages+622 Looking at the bisected-to pa ---truncated---
CVE-2024-42253 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: gpio: pca953x: fix pca953x_irq_bus_sync_unlock race Ensure that `i2c_lock' is held when setting interrupt latch and mask in pca953x_irq_bus_sync_unlock() in order to avoid races. The other (non-probe) call site pca953x_gpio_set_multiple() ensures the lock is held before calling pca953x_write_regs(). The problem occurred when a request raced against irq_bus_sync_unlock() approximately once per thousand reboots on an i.MX8MP based system. * Normal case 0-0022: write register AI|3a {03,02,00,00,01} Input latch P0 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 * Race case 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register *** 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
CVE-2024-42250 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cachefiles: add missing lock protection when polling Add missing lock protection in poll routine when iterating xarray, otherwise: Even with RCU read lock held, only the slot of the radix tree is ensured to be pinned there, while the data structure (e.g. struct cachefiles_req) stored in the slot has no such guarantee. The poll routine will iterate the radix tree and dereference cachefiles_req accordingly. Thus RCU read lock is not adequate in this case and spinlock is needed here.
CVE-2024-42245 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "sched/fair: Make sure to try to detach at least one movable task" This reverts commit b0defa7ae03ecf91b8bfd10ede430cff12fcbd06. b0defa7ae03ec changed the load balancing logic to ignore env.max_loop if all tasks examined to that point were pinned. The goal of the patch was to make it more likely to be able to detach a task buried in a long list of pinned tasks. However, this has the unfortunate side effect of creating an O(n) iteration in detach_tasks(), as we now must fully iterate every task on a cpu if all or most are pinned. Since this load balance code is done with rq lock held, and often in softirq context, it is very easy to trigger hard lockups. We observed such hard lockups with a user who affined O(10k) threads to a single cpu. When I discussed this with Vincent he initially suggested that we keep the limit on the number of tasks to detach, but increase the number of tasks we can search. However, after some back and forth on the mailing list, he recommended we instead revert the original patch, as it seems likely no one was actually getting hit by the original issue.