Total
530 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-4287 | 2025-05-06 | 3.3 Low | ||
A vulnerability was found in PyTorch 2.6.0+cu124. It has been rated as problematic. Affected by this issue is the function torch.cuda.nccl.reduce of the file torch/cuda/nccl.py. The manipulation leads to denial of service. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used. The patch is identified as 5827d2061dcb4acd05ac5f8e65d8693a481ba0f5. It is recommended to apply a patch to fix this issue. | ||||
CVE-2022-1473 | 3 Netapp, Openssl, Redhat | 44 A250, A250 Firmware, A700s and 41 more | 2025-05-05 | 7.5 High |
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). | ||||
CVE-2024-57879 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: iso: Always release hdev at the end of iso_listen_bis Since hci_get_route holds the device before returning, the hdev should be released with hci_dev_put at the end of iso_listen_bis even if the function returns with an error. | ||||
CVE-2024-50065 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Change to non-blocking allocation in ntfs_d_hash d_hash is done while under "rcu-walk" and should not sleep. __get_name() allocates using GFP_KERNEL, having the possibility to sleep when under memory pressure. Change the allocation to GFP_NOWAIT. | ||||
CVE-2024-43870 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 5.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: perf: Fix event leak upon exit When a task is scheduled out, pending sigtrap deliveries are deferred to the target task upon resume to userspace via task_work. However failures while adding an event's callback to the task_work engine are ignored. And since the last call for events exit happen after task work is eventually closed, there is a small window during which pending sigtrap can be queued though ignored, leaking the event refcount addition such as in the following scenario: TASK A ----- do_exit() exit_task_work(tsk); <IRQ> perf_event_overflow() event->pending_sigtrap = pending_id; irq_work_queue(&event->pending_irq); </IRQ> =========> PREEMPTION: TASK A -> TASK B event_sched_out() event->pending_sigtrap = 0; atomic_long_inc_not_zero(&event->refcount) // FAILS: task work has exited task_work_add(&event->pending_task) [...] <IRQ WORK> perf_pending_irq() // early return: event->oncpu = -1 </IRQ WORK> [...] =========> TASK B -> TASK A perf_event_exit_task(tsk) perf_event_exit_event() free_event() WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1) // leak event due to unexpected refcount == 2 As a result the event is never released while the task exits. Fix this with appropriate task_work_add()'s error handling. | ||||
CVE-2024-41006 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix a memory leak in nr_heartbeat_expiry() syzbot reported a memory leak in nr_create() [0]. Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.") added sock_hold() to the nr_heartbeat_expiry() function, where a) a socket has a SOCK_DESTROY flag or b) a listening socket has a SOCK_DEAD flag. But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor has already been closed and the nr_release() function has been called. So it makes no sense to hold the reference count because no one will call another nr_destroy_socket() and put it as in the case "b." nr_connect nr_establish_data_link nr_start_heartbeat nr_release switch (nr->state) case NR_STATE_3 nr->state = NR_STATE_2 sock_set_flag(sk, SOCK_DESTROY); nr_rx_frame nr_process_rx_frame switch (nr->state) case NR_STATE_2 nr_state2_machine() nr_disconnect() nr_sk(sk)->state = NR_STATE_0 sock_set_flag(sk, SOCK_DEAD) nr_heartbeat_expiry switch (nr->state) case NR_STATE_0 if (sock_flag(sk, SOCK_DESTROY) || (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_DEAD))) sock_hold() // ( !!! ) nr_destroy_socket() To fix the memory leak, let's call sock_hold() only for a listening socket. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with Syzkaller. [0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16 | ||||
CVE-2024-40934 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: logitech-dj: Fix memory leak in logi_dj_recv_switch_to_dj_mode() Fix a memory leak on logi_dj_recv_send_report() error path. | ||||
CVE-2024-56751 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: release nexthop on device removal The CI is hitting some aperiodic hangup at device removal time in the pmtu.sh self-test: unregister_netdevice: waiting for veth_A-R1 to become free. Usage count = 6 ref_tracker: veth_A-R1@ffff888013df15d8 has 1/5 users at dst_init+0x84/0x4a0 dst_alloc+0x97/0x150 ip6_dst_alloc+0x23/0x90 ip6_rt_pcpu_alloc+0x1e6/0x520 ip6_pol_route+0x56f/0x840 fib6_rule_lookup+0x334/0x630 ip6_route_output_flags+0x259/0x480 ip6_dst_lookup_tail.constprop.0+0x5c2/0x940 ip6_dst_lookup_flow+0x88/0x190 udp_tunnel6_dst_lookup+0x2a7/0x4c0 vxlan_xmit_one+0xbde/0x4a50 [vxlan] vxlan_xmit+0x9ad/0xf20 [vxlan] dev_hard_start_xmit+0x10e/0x360 __dev_queue_xmit+0xf95/0x18c0 arp_solicit+0x4a2/0xe00 neigh_probe+0xaa/0xf0 While the first suspect is the dst_cache, explicitly tracking the dst owing the last device reference via probes proved such dst is held by the nexthop in the originating fib6_info. Similar to commit f5b51fe804ec ("ipv6: route: purge exception on removal"), we need to explicitly release the originating fib info when disconnecting a to-be-removed device from a live ipv6 dst: move the fib6_info cleanup into ip6_dst_ifdown(). Tested running: ./pmtu.sh cleanup_ipv6_exception in a tight loop for more than 400 iterations with no spat, running an unpatched kernel I observed a splat every ~10 iterations. | ||||
CVE-2024-56545 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: HID: hyperv: streamline driver probe to avoid devres issues It was found that unloading 'hid_hyperv' module results in a devres complaint: ... hv_vmbus: unregistering driver hid_hyperv ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3983 at drivers/base/devres.c:691 devres_release_group+0x1f2/0x2c0 ... Call Trace: <TASK> ? devres_release_group+0x1f2/0x2c0 ? __warn+0xd1/0x1c0 ? devres_release_group+0x1f2/0x2c0 ? report_bug+0x32a/0x3c0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? devres_release_group+0x1f2/0x2c0 ? devres_release_group+0x90/0x2c0 ? rcu_is_watching+0x15/0xb0 ? __pfx_devres_release_group+0x10/0x10 hid_device_remove+0xf5/0x220 device_release_driver_internal+0x371/0x540 ? klist_put+0xf3/0x170 bus_remove_device+0x1f1/0x3f0 device_del+0x33f/0x8c0 ? __pfx_device_del+0x10/0x10 ? cleanup_srcu_struct+0x337/0x500 hid_destroy_device+0xc8/0x130 mousevsc_remove+0xd2/0x1d0 [hid_hyperv] device_release_driver_internal+0x371/0x540 driver_detach+0xc5/0x180 bus_remove_driver+0x11e/0x2a0 ? __mutex_unlock_slowpath+0x160/0x5e0 vmbus_driver_unregister+0x62/0x2b0 [hv_vmbus] ... And the issue seems to be that the corresponding devres group is not allocated. Normally, devres_open_group() is called from __hid_device_probe() but Hyper-V HID driver overrides 'hid_dev->driver' with 'mousevsc_hid_driver' stub and basically re-implements __hid_device_probe() by calling hid_parse() and hid_hw_start() but not devres_open_group(). hid_device_probe() does not call __hid_device_probe() for it. Later, when the driver is removed, hid_device_remove() calls devres_release_group() as it doesn't check whether hdev->driver was initially overridden or not. The issue seems to be related to the commit 62c68e7cee33 ("HID: ensure timely release of driver-allocated resources") but the commit itself seems to be correct. Fix the issue by dropping the 'hid_dev->driver' override and using hid_register_driver()/hid_unregister_driver() instead. Alternatively, it would have been possible to rely on the default handling but HID_CONNECT_DEFAULT implies HID_CONNECT_HIDRAW and it doesn't seem to work for mousevsc as-is. | ||||
CVE-2024-53202 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: firmware_loader: Fix possible resource leak in fw_log_firmware_info() The alg instance should be released under the exception path, otherwise there may be resource leak here. To mitigate this, free the alg instance with crypto_free_shash when kmalloc fails. | ||||
CVE-2024-50189 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: Switch to device-managed dmam_alloc_coherent() Using the device-managed version allows to simplify clean-up in probe() error path. Additionally, this device-managed ensures proper cleanup, which helps to resolve memory errors, page faults, btrfs going read-only, and btrfs disk corruption. | ||||
CVE-2024-50024 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: Fix an unsafe loop on the list The kernel may crash when deleting a genetlink family if there are still listeners for that family: Oops: Kernel access of bad area, sig: 11 [#1] ... NIP [c000000000c080bc] netlink_update_socket_mc+0x3c/0xc0 LR [c000000000c0f764] __netlink_clear_multicast_users+0x74/0xc0 Call Trace: __netlink_clear_multicast_users+0x74/0xc0 genl_unregister_family+0xd4/0x2d0 Change the unsafe loop on the list to a safe one, because inside the loop there is an element removal from this list. | ||||
CVE-2024-47736 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: erofs: handle overlapped pclusters out of crafted images properly syzbot reported a task hang issue due to a deadlock case where it is waiting for the folio lock of a cached folio that will be used for cache I/Os. After looking into the crafted fuzzed image, I found it's formed with several overlapped big pclusters as below: Ext: logical offset | length : physical offset | length 0: 0.. 16384 | 16384 : 151552.. 167936 | 16384 1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384 2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384 ... Here, extent 0/1 are physically overlapped although it's entirely _impossible_ for normal filesystem images generated by mkfs. First, managed folios containing compressed data will be marked as up-to-date and then unlocked immediately (unlike in-place folios) when compressed I/Os are complete. If physical blocks are not submitted in the incremental order, there should be separate BIOs to avoid dependency issues. However, the current code mis-arranges z_erofs_fill_bio_vec() and BIO submission which causes unexpected BIO waits. Second, managed folios will be connected to their own pclusters for efficient inter-queries. However, this is somewhat hard to implement easily if overlapped big pclusters exist. Again, these only appear in fuzzed images so let's simply fall back to temporary short-lived pages for correctness. Additionally, it justifies that referenced managed folios cannot be truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy up `struct z_erofs_bvec`") for simplicity although it shouldn't be any difference. | ||||
CVE-2024-46861 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: usbnet: ipheth: do not stop RX on failing RX callback RX callbacks can fail for multiple reasons: * Payload too short * Payload formatted incorrecly (e.g. bad NCM framing) * Lack of memory None of these should cause the driver to seize up. Make such failures non-critical and continue processing further incoming URBs. | ||||
CVE-2024-46752 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: btrfs: replace BUG_ON() with error handling at update_ref_for_cow() Instead of a BUG_ON() just return an error, log an error message and abort the transaction in case we find an extent buffer belonging to the relocation tree that doesn't have the full backref flag set. This is unexpected and should never happen (save for bugs or a potential bad memory). | ||||
CVE-2024-46736 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix double put of @cfile in smb2_rename_path() If smb2_set_path_attr() is called with a valid @cfile and returned -EINVAL, we need to call cifs_get_writable_path() again as the reference of @cfile was already dropped by previous smb2_compound_op() call. | ||||
CVE-2024-42099 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: Fix invalid dereferencing of indirect CCW data pointer Fix invalid dereferencing of indirect CCW data pointer in dasd_eckd_dump_sense() that leads to a kernel panic in error cases. When using indirect addressing for DASD CCWs (IDAW) the CCW CDA pointer does not contain the data address itself but a pointer to the IDAL. This needs to be translated from physical to virtual as well before using it. This dereferencing is also used for dasd_page_cache and also fixed although it is very unlikely that this code path ever gets used. | ||||
CVE-2024-26757 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: md: Don't ignore read-only array in md_check_recovery() Usually if the array is not read-write, md_check_recovery() won't register new sync_thread in the first place. And if the array is read-write and sync_thread is registered, md_set_readonly() will unregister sync_thread before setting the array read-only. md/raid follow this behavior hence there is no problem. After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following hang can be triggered by test shell/integrity-caching.sh: 1) array is read-only. dm-raid update super block: rs_update_sbs ro = mddev->ro mddev->ro = 0 -> set array read-write md_update_sb 2) register new sync thread concurrently. 3) dm-raid set array back to read-only: rs_update_sbs mddev->ro = ro 4) stop the array: raid_dtr md_stop stop_sync_thread set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread_directly(mddev->sync_thread); wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5) sync thread done: md_do_sync set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); 6) daemon thread can't unregister sync thread: md_check_recovery if (!md_is_rdwr(mddev) && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; -> -> MD_RECOVERY_RUNNING can't be cleared, hence step 4 hang; The root cause is that dm-raid manipulate 'mddev->ro' by itself, however, dm-raid really should stop sync thread before setting the array read-only. Unfortunately, I need to read more code before I can refacter the handler of 'mddev->ro' in dm-raid, hence let's fix the problem the easy way for now to prevent dm-raid regression. | ||||
CVE-2022-49745 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: fpga: m10bmc-sec: Fix probe rollback Handle probe error rollbacks properly to avoid leaks. | ||||
CVE-2022-48758 | 2025-05-04 | 2.3 Low | ||
In the Linux kernel, the following vulnerability has been resolved: scsi: bnx2fc: Flush destroy_work queue before calling bnx2fc_interface_put() The bnx2fc_destroy() functions are removing the interface before calling destroy_work. This results multiple WARNings from sysfs_remove_group() as the controller rport device attributes are removed too early. Replace the fcoe_port's destroy_work queue. It's not needed. The problem is easily reproducible with the following steps. Example: $ dmesg -w & $ systemctl enable --now fcoe $ fipvlan -s -c ens2f1 $ fcoeadm -d ens2f1.802 [ 583.464488] host2: libfc: Link down on port (7500a1) [ 583.472651] bnx2fc: 7500a1 - rport not created Yet!! [ 583.490468] ------------[ cut here ]------------ [ 583.538725] sysfs group 'power' not found for kobject 'rport-2:0-0' [ 583.568814] WARNING: CPU: 3 PID: 192 at fs/sysfs/group.c:279 sysfs_remove_group+0x6f/0x80 [ 583.607130] Modules linked in: dm_service_time 8021q garp mrp stp llc bnx2fc cnic uio rpcsec_gss_krb5 auth_rpcgss nfsv4 ... [ 583.942994] CPU: 3 PID: 192 Comm: kworker/3:2 Kdump: loaded Not tainted 5.14.0-39.el9.x86_64 #1 [ 583.984105] Hardware name: HP ProLiant DL120 G7, BIOS J01 07/01/2013 [ 584.016535] Workqueue: fc_wq_2 fc_rport_final_delete [scsi_transport_fc] [ 584.050691] RIP: 0010:sysfs_remove_group+0x6f/0x80 [ 584.074725] Code: ff 5b 48 89 ef 5d 41 5c e9 ee c0 ff ff 48 89 ef e8 f6 b8 ff ff eb d1 49 8b 14 24 48 8b 33 48 c7 c7 ... [ 584.162586] RSP: 0018:ffffb567c15afdc0 EFLAGS: 00010282 [ 584.188225] RAX: 0000000000000000 RBX: ffffffff8eec4220 RCX: 0000000000000000 [ 584.221053] RDX: ffff8c1586ce84c0 RSI: ffff8c1586cd7cc0 RDI: ffff8c1586cd7cc0 [ 584.255089] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffb567c15afc00 [ 584.287954] R10: ffffb567c15afbf8 R11: ffffffff8fbe7f28 R12: ffff8c1486326400 [ 584.322356] R13: ffff8c1486326480 R14: ffff8c1483a4a000 R15: 0000000000000004 [ 584.355379] FS: 0000000000000000(0000) GS:ffff8c1586cc0000(0000) knlGS:0000000000000000 [ 584.394419] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 584.421123] CR2: 00007fe95a6f7840 CR3: 0000000107674002 CR4: 00000000000606e0 [ 584.454888] Call Trace: [ 584.466108] device_del+0xb2/0x3e0 [ 584.481701] device_unregister+0x13/0x60 [ 584.501306] bsg_unregister_queue+0x5b/0x80 [ 584.522029] bsg_remove_queue+0x1c/0x40 [ 584.541884] fc_rport_final_delete+0xf3/0x1d0 [scsi_transport_fc] [ 584.573823] process_one_work+0x1e3/0x3b0 [ 584.592396] worker_thread+0x50/0x3b0 [ 584.609256] ? rescuer_thread+0x370/0x370 [ 584.628877] kthread+0x149/0x170 [ 584.643673] ? set_kthread_struct+0x40/0x40 [ 584.662909] ret_from_fork+0x22/0x30 [ 584.680002] ---[ end trace 53575ecefa942ece ]--- |