Total
2731 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-26884 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix hashtab overflow check on 32-bit arches The hashtab code relies on roundup_pow_of_two() to compute the number of hash buckets, and contains an overflow check by checking if the resulting value is 0. However, on 32-bit arches, the roundup code itself can overflow by doing a 32-bit left-shift of an unsigned long value, which is undefined behaviour, so it is not guaranteed to truncate neatly. This was triggered by syzbot on the DEVMAP_HASH type, which contains the same check, copied from the hashtab code. So apply the same fix to hashtab, by moving the overflow check to before the roundup. | ||||
CVE-2024-26768 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 6.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC] With default config, the value of NR_CPUS is 64. When HW platform has more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC is the maximum cpu number in MADT table (max physical number) which can exceed the supported maximum cpu number (NR_CPUS, max logical number), but kernel should not crash. Kernel should boot cpus with NR_CPUS, let the remainder cpus stay in BIOS. The potential crash reason is that the array acpi_core_pic[NR_CPUS] can be overflowed when parsing MADT table, and it is obvious that CORE_PIC should be corresponding to physical core rather than logical core, so it is better to define the array as acpi_core_pic[MAX_CORE_PIC]. With the patch, system can boot up 64 vcpus with qemu parameter -smp 128, otherwise system will crash with the following message. [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192 [ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 [ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60 [ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8 [ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005 [ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001 [ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063 [ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98 [ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90 [ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330 [ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250 [ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94 [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 0.000000] BADV: 0000420000004259 [ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec [ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000 [ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60 [ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000 [ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c [ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08 [ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018 [ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000 [ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000 [ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94 [ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250 [ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c [ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670 [ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc | ||||
CVE-2024-26753 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: crypto: virtio/akcipher - Fix stack overflow on memcpy sizeof(struct virtio_crypto_akcipher_session_para) is less than sizeof(struct virtio_crypto_op_ctrl_req::u), copying more bytes from stack variable leads stack overflow. Clang reports this issue by commands: make -j CC=clang-14 mrproper >/dev/null 2>&1 make -j O=/tmp/crypto-build CC=clang-14 allmodconfig >/dev/null 2>&1 make -j O=/tmp/crypto-build W=1 CC=clang-14 drivers/crypto/virtio/ virtio_crypto_akcipher_algs.o | ||||
CVE-2024-26736 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: afs: Increase buffer size in afs_update_volume_status() The max length of volume->vid value is 20 characters. So increase idbuf[] size up to 24 to avoid overflow. Found by Linux Verification Center (linuxtesting.org) with SVACE. [DH: Actually, it's 20 + NUL, so increase it to 24 and use snprintf()] | ||||
CVE-2023-52796 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipvlan: add ipvlan_route_v6_outbound() helper Inspired by syzbot reports using a stack of multiple ipvlan devices. Reduce stack size needed in ipvlan_process_v6_outbound() by moving the flowi6 struct used for the route lookup in an non inlined helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack, immediately reclaimed. Also make sure ipvlan_process_v4_outbound() is not inlined. We might also have to lower MAX_NEST_DEV, because only syzbot uses setups with more than four stacked devices. BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000) stack guard page: 0000 [#1] SMP KASAN CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188 Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89 RSP: 0018:ffffc9000e804000 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2 RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568 RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000 FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <#DF> </#DF> <TASK> [<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31 [<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline] [<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] [<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline] [<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline] [<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline] [<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632 [<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306 [<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline] [<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221 [<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606 [<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline] [<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116 [<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638 [<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651 [<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline] [<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline] [<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline] [<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324 [<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline] [<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline] [<f ---truncated--- | ||||
CVE-2023-52762 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: virtio-blk: fix implicit overflow on virtio_max_dma_size The following codes have an implicit conversion from size_t to u32: (u32)max_size = (size_t)virtio_max_dma_size(vdev); This may lead overflow, Ex (size_t)4G -> (u32)0. Once virtio_max_dma_size() has a larger size than U32_MAX, use U32_MAX instead. | ||||
CVE-2023-52761 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: riscv: VMAP_STACK overflow detection thread-safe commit 31da94c25aea ("riscv: add VMAP_STACK overflow detection") added support for CONFIG_VMAP_STACK. If overflow is detected, CPU switches to `shadow_stack` temporarily before switching finally to per-cpu `overflow_stack`. If two CPUs/harts are racing and end up in over flowing kernel stack, one or both will end up corrupting each other state because `shadow_stack` is not per-cpu. This patch optimizes per-cpu overflow stack switch by directly picking per-cpu `overflow_stack` and gets rid of `shadow_stack`. Following are the changes in this patch - Defines an asm macro to obtain per-cpu symbols in destination register. - In entry.S, when overflow is detected, per-cpu overflow stack is located using per-cpu asm macro. Computing per-cpu symbol requires a temporary register. x31 is saved away into CSR_SCRATCH (CSR_SCRATCH is anyways zero since we're in kernel). Please see Links for additional relevant disccussion and alternative solution. Tested by `echo EXHAUST_STACK > /sys/kernel/debug/provoke-crash/DIRECT` Kernel crash log below Insufficient stack space to handle exception!/debug/provoke-crash/DIRECT Task stack: [0xff20000010a98000..0xff20000010a9c000] Overflow stack: [0xff600001f7d98370..0xff600001f7d99370] CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) epc : __memset+0x60/0xfc ra : recursive_loop+0x48/0xc6 [lkdtm] epc : ffffffff808de0e4 ra : ffffffff0163a752 sp : ff20000010a97e80 gp : ffffffff815c0330 tp : ff600000820ea280 t0 : ff20000010a97e88 t1 : 000000000000002e t2 : 3233206874706564 s0 : ff20000010a982b0 s1 : 0000000000000012 a0 : ff20000010a97e88 a1 : 0000000000000000 a2 : 0000000000000400 a3 : ff20000010a98288 a4 : 0000000000000000 a5 : 0000000000000000 a6 : fffffffffffe43f0 a7 : 00007fffffffffff s2 : ff20000010a97e88 s3 : ffffffff01644680 s4 : ff20000010a9be90 s5 : ff600000842ba6c0 s6 : 00aaaaaac29e42b0 s7 : 00fffffff0aa3684 s8 : 00aaaaaac2978040 s9 : 0000000000000065 s10: 00ffffff8a7cad10 s11: 00ffffff8a76a4e0 t3 : ffffffff815dbaf4 t4 : ffffffff815dbaf4 t5 : ffffffff815dbab8 t6 : ff20000010a9bb48 status: 0000000200000120 badaddr: ff20000010a97e88 cause: 000000000000000f Kernel panic - not syncing: Kernel stack overflow CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) Call Trace: [<ffffffff80006754>] dump_backtrace+0x30/0x38 [<ffffffff808de798>] show_stack+0x40/0x4c [<ffffffff808ea2a8>] dump_stack_lvl+0x44/0x5c [<ffffffff808ea2d8>] dump_stack+0x18/0x20 [<ffffffff808dec06>] panic+0x126/0x2fe [<ffffffff800065ea>] walk_stackframe+0x0/0xf0 [<ffffffff0163a752>] recursive_loop+0x48/0xc6 [lkdtm] SMP: stopping secondary CPUs ---[ end Kernel panic - not syncing: Kernel stack overflow ]--- | ||||
CVE-2023-52614 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: PM / devfreq: Fix buffer overflow in trans_stat_show Fix buffer overflow in trans_stat_show(). Convert simple snprintf to the more secure scnprintf with size of PAGE_SIZE. Add condition checking if we are exceeding PAGE_SIZE and exit early from loop. Also add at the end a warning that we exceeded PAGE_SIZE and that stats is disabled. Return -EFBIG in the case where we don't have enough space to write the full transition table. Also document in the ABI that this function can return -EFBIG error. | ||||
CVE-2023-52612 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: crypto: scomp - fix req->dst buffer overflow The req->dst buffer size should be checked before copying from the scomp_scratch->dst to avoid req->dst buffer overflow problem. | ||||
CVE-2023-52606 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: powerpc/lib: Validate size for vector operations Some of the fp/vmx code in sstep.c assume a certain maximum size for the instructions being emulated. The size of those operations however is determined separately in analyse_instr(). Add a check to validate the assumption on the maximum size of the operations, so as to prevent any unintended kernel stack corruption. | ||||
CVE-2023-52519 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit The EHL (Elkhart Lake) based platforms provide a OOB (Out of band) service, which allows to wakup device when the system is in S5 (Soft-Off state). This OOB service can be enabled/disabled from BIOS settings. When enabled, the ISH device gets PME wake capability. To enable PME wakeup, driver also needs to enable ACPI GPE bit. On resume, BIOS will clear the wakeup bit. So driver need to re-enable it in resume function to keep the next wakeup capability. But this BIOS clearing of wakeup bit doesn't decrement internal OS GPE reference count, so this reenabling on every resume will cause reference count to overflow. So first disable and reenable ACPI GPE bit using acpi_disable_gpe(). | ||||
CVE-2025-21804 | 2025-05-04 | 3.3 Low | ||
In the Linux kernel, the following vulnerability has been resolved: PCI: rcar-ep: Fix incorrect variable used when calling devm_request_mem_region() The rcar_pcie_parse_outbound_ranges() uses the devm_request_mem_region() macro to request a needed resource. A string variable that lives on the stack is then used to store a dynamically computed resource name, which is then passed on as one of the macro arguments. This can lead to undefined behavior. Depending on the current contents of the memory, the manifestations of errors may vary. One possible output may be as follows: $ cat /proc/iomem 30000000-37ffffff : 38000000-3fffffff : Sometimes, garbage may appear after the colon. In very rare cases, if no NULL-terminator is found in memory, the system might crash because the string iterator will overrun which can lead to access of unmapped memory above the stack. Thus, fix this by replacing outbound_name with the name of the previously requested resource. With the changes applied, the output will be as follows: $ cat /proc/iomem 30000000-37ffffff : memory2 38000000-3fffffff : memory3 [kwilczynski: commit log] | ||||
CVE-2021-47390 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix stack-out-of-bounds memory access from ioapic_write_indirect() KASAN reports the following issue: BUG: KASAN: stack-out-of-bounds in kvm_make_vcpus_request_mask+0x174/0x440 [kvm] Read of size 8 at addr ffffc9001364f638 by task qemu-kvm/4798 CPU: 0 PID: 4798 Comm: qemu-kvm Tainted: G X --------- --- Hardware name: AMD Corporation DAYTONA_X/DAYTONA_X, BIOS RYM0081C 07/13/2020 Call Trace: dump_stack+0xa5/0xe6 print_address_description.constprop.0+0x18/0x130 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] __kasan_report.cold+0x7f/0x114 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kasan_report+0x38/0x50 kasan_check_range+0xf5/0x1d0 kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kvm_make_scan_ioapic_request_mask+0x84/0xc0 [kvm] ? kvm_arch_exit+0x110/0x110 [kvm] ? sched_clock+0x5/0x10 ioapic_write_indirect+0x59f/0x9e0 [kvm] ? static_obj+0xc0/0xc0 ? __lock_acquired+0x1d2/0x8c0 ? kvm_ioapic_eoi_inject_work+0x120/0x120 [kvm] The problem appears to be that 'vcpu_bitmap' is allocated as a single long on stack and it should really be KVM_MAX_VCPUS long. We also seem to clear the lower 16 bits of it with bitmap_zero() for no particular reason (my guess would be that 'bitmap' and 'vcpu_bitmap' variables in kvm_bitmap_or_dest_vcpus() caused the confusion: while the later is indeed 16-bit long, the later should accommodate all possible vCPUs). | ||||
CVE-2021-47172 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad7124: Fix potential overflow due to non sequential channel numbers Channel numbering must start at 0 and then not have any holes, or it is possible to overflow the available storage. Note this bug was introduced as part of a fix to ensure we didn't rely on the ordering of child nodes. So we need to support arbitrary ordering but they all need to be there somewhere. Note I hit this when using qemu to test the rest of this series. Arguably this isn't the best fix, but it is probably the most minimal option for backporting etc. Alexandru's sign-off is here because he carried this patch in a larger set that Jonathan then applied. | ||||
CVE-2021-47109 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: neighbour: allow NUD_NOARP entries to be forced GCed IFF_POINTOPOINT interfaces use NUD_NOARP entries for IPv6. It's possible to fill up the neighbour table with enough entries that it will overflow for valid connections after that. This behaviour is more prevalent after commit 58956317c8de ("neighbor: Improve garbage collection") is applied, as it prevents removal from entries that are not NUD_FAILED, unless they are more than 5s old. | ||||
CVE-2021-47107 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix READDIR buffer overflow If a client sends a READDIR count argument that is too small (say, zero), then the buffer size calculation in the new init_dirlist helper functions results in an underflow, allowing the XDR stream functions to write beyond the actual buffer. This calculation has always been suspect. NFSD has never sanity- checked the READDIR count argument, but the old entry encoders managed the problem correctly. With the commits below, entry encoding changed, exposing the underflow to the pointer arithmetic in xdr_reserve_space(). Modern NFS clients attempt to retrieve as much data as possible for each READDIR request. Also, we have no unit tests that exercise the behavior of READDIR at the lower bound of @count values. Thus this case was missed during testing. | ||||
CVE-2021-47065 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: rtw88: Fix array overrun in rtw_get_tx_power_params() Using a kernel with the Undefined Behaviour Sanity Checker (UBSAN) enabled, the following array overrun is logged: ================================================================================ UBSAN: array-index-out-of-bounds in /home/finger/wireless-drivers-next/drivers/net/wireless/realtek/rtw88/phy.c:1789:34 index 5 is out of range for type 'u8 [5]' CPU: 2 PID: 84 Comm: kworker/u16:3 Tainted: G O 5.12.0-rc5-00086-gd88bba47038e-dirty #651 Hardware name: TOSHIBA TECRA A50-A/TECRA A50-A, BIOS Version 4.50 09/29/2014 Workqueue: phy0 ieee80211_scan_work [mac80211] Call Trace: dump_stack+0x64/0x7c ubsan_epilogue+0x5/0x40 __ubsan_handle_out_of_bounds.cold+0x43/0x48 rtw_get_tx_power_params+0x83a/drivers/net/wireless/realtek/rtw88/0xad0 [rtw_core] ? rtw_pci_read16+0x20/0x20 [rtw_pci] ? check_hw_ready+0x50/0x90 [rtw_core] rtw_phy_get_tx_power_index+0x4d/0xd0 [rtw_core] rtw_phy_set_tx_power_level+0xee/0x1b0 [rtw_core] rtw_set_channel+0xab/0x110 [rtw_core] rtw_ops_config+0x87/0xc0 [rtw_core] ieee80211_hw_config+0x9d/0x130 [mac80211] ieee80211_scan_state_set_channel+0x81/0x170 [mac80211] ieee80211_scan_work+0x19f/0x2a0 [mac80211] process_one_work+0x1dd/0x3a0 worker_thread+0x49/0x330 ? rescuer_thread+0x3a0/0x3a0 kthread+0x134/0x150 ? kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x22/0x30 ================================================================================ The statement where an array is being overrun is shown in the following snippet: if (rate <= DESC_RATE11M) tx_power = pwr_idx_2g->cck_base[group]; else ====> tx_power = pwr_idx_2g->bw40_base[group]; The associated arrays are defined in main.h as follows: struct rtw_2g_txpwr_idx { u8 cck_base[6]; u8 bw40_base[5]; struct rtw_2g_1s_pwr_idx_diff ht_1s_diff; struct rtw_2g_ns_pwr_idx_diff ht_2s_diff; struct rtw_2g_ns_pwr_idx_diff ht_3s_diff; struct rtw_2g_ns_pwr_idx_diff ht_4s_diff; }; The problem arises because the value of group is 5 for channel 14. The trivial increase in the dimension of bw40_base fails as this struct must match the layout of efuse. The fix is to add the rate as an argument to rtw_get_channel_group() and set the group for channel 14 to 4 if rate <= DESC_RATE11M. This patch fixes commit fa6dfe6bff24 ("rtw88: resolve order of tx power setting routines") | ||||
CVE-2021-47046 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix off by one in hdmi_14_process_transaction() The hdcp_i2c_offsets[] array did not have an entry for HDCP_MESSAGE_ID_WRITE_CONTENT_STREAM_TYPE so it led to an off by one read overflow. I added an entry and copied the 0x0 value for the offset from similar code in drivers/gpu/drm/amd/display/modules/hdcp/hdcp_ddc.c. I also declared several of these arrays as having HDCP_MESSAGE_ID_MAX entries. This doesn't change the code, but it's just a belt and suspenders approach to try future proof the code. | ||||
CVE-2021-47040 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix overflows checks in provide buffers Colin reported before possible overflow and sign extension problems in io_provide_buffers_prep(). As Linus pointed out previous attempt did nothing useful, see d81269fecb8ce ("io_uring: fix provide_buffers sign extension"). Do that with help of check_<op>_overflow helpers. And fix struct io_provide_buf::len type, as it doesn't make much sense to keep it signed. | ||||
CVE-2021-46931 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Wrap the tx reporter dump callback to extract the sq Function mlx5e_tx_reporter_dump_sq() casts its void * argument to struct mlx5e_txqsq *, but in TX-timeout-recovery flow the argument is actually of type struct mlx5e_tx_timeout_ctx *. mlx5_core 0000:08:00.1 enp8s0f1: TX timeout detected mlx5_core 0000:08:00.1 enp8s0f1: TX timeout on queue: 1, SQ: 0x11ec, CQ: 0x146d, SQ Cons: 0x0 SQ Prod: 0x1, usecs since last trans: 21565000 BUG: stack guard page was hit at 0000000093f1a2de (stack is 00000000b66ea0dc..000000004d932dae) kernel stack overflow (page fault): 0000 [#1] SMP NOPTI CPU: 5 PID: 95 Comm: kworker/u20:1 Tainted: G W OE 5.13.0_mlnx #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5e mlx5e_tx_timeout_work [mlx5_core] RIP: 0010:mlx5e_tx_reporter_dump_sq+0xd3/0x180 [mlx5_core] Call Trace: mlx5e_tx_reporter_dump+0x43/0x1c0 [mlx5_core] devlink_health_do_dump.part.91+0x71/0xd0 devlink_health_report+0x157/0x1b0 mlx5e_reporter_tx_timeout+0xb9/0xf0 [mlx5_core] ? mlx5e_tx_reporter_err_cqe_recover+0x1d0/0x1d0 [mlx5_core] ? mlx5e_health_queue_dump+0xd0/0xd0 [mlx5_core] ? update_load_avg+0x19b/0x550 ? set_next_entity+0x72/0x80 ? pick_next_task_fair+0x227/0x340 ? finish_task_switch+0xa2/0x280 mlx5e_tx_timeout_work+0x83/0xb0 [mlx5_core] process_one_work+0x1de/0x3a0 worker_thread+0x2d/0x3c0 ? process_one_work+0x3a0/0x3a0 kthread+0x115/0x130 ? kthread_park+0x90/0x90 ret_from_fork+0x1f/0x30 --[ end trace 51ccabea504edaff ]--- RIP: 0010:mlx5e_tx_reporter_dump_sq+0xd3/0x180 PKRU: 55555554 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled end Kernel panic - not syncing: Fatal exception To fix this bug add a wrapper for mlx5e_tx_reporter_dump_sq() which extracts the sq from struct mlx5e_tx_timeout_ctx and set it as the TX-timeout-recovery flow dump callback. |