Total
12470 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-52527 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv4, ipv6: Fix handling of transhdrlen in __ip{,6}_append_data() Including the transhdrlen in length is a problem when the packet is partially filled (e.g. something like send(MSG_MORE) happened previously) when appending to an IPv4 or IPv6 packet as we don't want to repeat the transport header or account for it twice. This can happen under some circumstances, such as splicing into an L2TP socket. The symptom observed is a warning in __ip6_append_data(): WARNING: CPU: 1 PID: 5042 at net/ipv6/ip6_output.c:1800 __ip6_append_data.isra.0+0x1be8/0x47f0 net/ipv6/ip6_output.c:1800 that occurs when MSG_SPLICE_PAGES is used to append more data to an already partially occupied skbuff. The warning occurs when 'copy' is larger than the amount of data in the message iterator. This is because the requested length includes the transport header length when it shouldn't. This can be triggered by, for example: sfd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_L2TP); bind(sfd, ...); // ::1 connect(sfd, ...); // ::1 port 7 send(sfd, buffer, 4100, MSG_MORE); sendfile(sfd, dfd, NULL, 1024); Fix this by only adding transhdrlen into the length if the write queue is empty in l2tp_ip6_sendmsg(), analogously to how UDP does things. l2tp_ip_sendmsg() looks like it won't suffer from this problem as it builds the UDP packet itself. | ||||
CVE-2023-52522 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: fix possible store tearing in neigh_periodic_work() While looking at a related syzbot report involving neigh_periodic_work(), I found that I forgot to add an annotation when deleting an RCU protected item from a list. Readers use rcu_deference(*np), we need to use either rcu_assign_pointer() or WRITE_ONCE() on writer side to prevent store tearing. I use rcu_assign_pointer() to have lockdep support, this was the choice made in neigh_flush_dev(). | ||||
CVE-2023-52511 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: spi: sun6i: reduce DMA RX transfer width to single byte Through empirical testing it has been determined that sometimes RX SPI transfers with DMA enabled return corrupted data. This is down to single or even multiple bytes lost during DMA transfer from SPI peripheral to memory. It seems the RX FIFO within the SPI peripheral can become confused when performing bus read accesses wider than a single byte to it during an active SPI transfer. This patch reduces the width of individual DMA read accesses to the RX FIFO to a single byte to mitigate that issue. | ||||
CVE-2023-52499 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: powerpc/47x: Fix 47x syscall return crash Eddie reported that newer kernels were crashing during boot on his 476 FSP2 system: kernel tried to execute user page (b7ee2000) - exploit attempt? (uid: 0) BUG: Unable to handle kernel instruction fetch Faulting instruction address: 0xb7ee2000 Oops: Kernel access of bad area, sig: 11 [#1] BE PAGE_SIZE=4K FSP-2 Modules linked in: CPU: 0 PID: 61 Comm: mount Not tainted 6.1.55-d23900f.ppcnf-fsp2 #1 Hardware name: ibm,fsp2 476fpe 0x7ff520c0 FSP-2 NIP: b7ee2000 LR: 8c008000 CTR: 00000000 REGS: bffebd83 TRAP: 0400 Not tainted (6.1.55-d23900f.ppcnf-fs p2) MSR: 00000030 <IR,DR> CR: 00001000 XER: 20000000 GPR00: c00110ac bffebe63 bffebe7e bffebe88 8c008000 00001000 00000d12 b7ee2000 GPR08: 00000033 00000000 00000000 c139df10 48224824 1016c314 10160000 00000000 GPR16: 10160000 10160000 00000008 00000000 10160000 00000000 10160000 1017f5b0 GPR24: 1017fa50 1017f4f0 1017fa50 1017f740 1017f630 00000000 00000000 1017f4f0 NIP [b7ee2000] 0xb7ee2000 LR [8c008000] 0x8c008000 Call Trace: Instruction dump: XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX ---[ end trace 0000000000000000 ]--- The problem is in ret_from_syscall where the check for icache_44x_need_flush is done. When the flush is needed the code jumps out-of-line to do the flush, and then intends to jump back to continue the syscall return. However the branch back to label 1b doesn't return to the correct location, instead branching back just prior to the return to userspace, causing bogus register values to be used by the rfi. The breakage was introduced by commit 6f76a01173cc ("powerpc/syscall: implement system call entry/exit logic in C for PPC32") which inadvertently removed the "1" label and reused it elsewhere. Fix it by adding named local labels in the correct locations. Note that the return label needs to be outside the ifdef so that CONFIG_PPC_47x=n compiles. | ||||
CVE-2025-22012 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Revert "arm64: dts: qcom: sdm845: Affirm IDR0.CCTW on apps_smmu" There are reports that the pagetable walker cache coherency is not a given across the spectrum of SDM845/850 devices, leading to lock-ups and resets. It works fine on some devices (like the Dragonboard 845c, but not so much on the Lenovo Yoga C630). This unfortunately looks like a fluke in firmware development, where likely somewhere in the vast hypervisor stack, a change to accommodate for this was only introduced after the initial software release (which often serves as a baseline for products). Revert the change to avoid additional guesswork around crashes. This reverts commit 6b31a9744b8726c69bb0af290f8475a368a4b805. | ||||
CVE-2025-22011 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ARM: dts: bcm2711: Fix xHCI power-domain During s2idle tests on the Raspberry CM4 the VPU firmware always crashes on xHCI power-domain resume: root@raspberrypi:/sys/power# echo freeze > state [ 70.724347] xhci_suspend finished [ 70.727730] xhci_plat_suspend finished [ 70.755624] bcm2835-power bcm2835-power: Power grafx off [ 70.761127] USB: Set power to 0 [ 74.653040] USB: Failed to set power to 1 (-110) This seems to be caused because of the mixed usage of raspberrypi-power and bcm2835-power at the same time. So avoid the usage of the VPU firmware power-domain driver, which prevents the VPU crash. | ||||
CVE-2025-21992 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: HID: ignore non-functional sensor in HP 5MP Camera The HP 5MP Camera (USB ID 0408:5473) reports a HID sensor interface that is not actually implemented. Attempting to access this non-functional sensor via iio_info causes system hangs as runtime PM tries to wake up an unresponsive sensor. [453] hid-sensor-hub 0003:0408:5473.0003: Report latency attributes: ffffffff:ffffffff [453] hid-sensor-hub 0003:0408:5473.0003: common attributes: 5:1, 2:1, 3:1 ffffffff:ffffffff Add this device to the HID ignore list since the sensor interface is non-functional by design and should not be exposed to userspace. | ||||
CVE-2025-21913 | 2025-05-04 | 5.3 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: x86/amd_nb: Use rdmsr_safe() in amd_get_mmconfig_range() Xen doesn't offer MSR_FAM10H_MMIO_CONF_BASE to all guests. This results in the following warning: unchecked MSR access error: RDMSR from 0xc0010058 at rIP: 0xffffffff8101d19f (xen_do_read_msr+0x7f/0xa0) Call Trace: xen_read_msr+0x1e/0x30 amd_get_mmconfig_range+0x2b/0x80 quirk_amd_mmconfig_area+0x28/0x100 pnp_fixup_device+0x39/0x50 __pnp_add_device+0xf/0x150 pnp_add_device+0x3d/0x100 pnpacpi_add_device_handler+0x1f9/0x280 acpi_ns_get_device_callback+0x104/0x1c0 acpi_ns_walk_namespace+0x1d0/0x260 acpi_get_devices+0x8a/0xb0 pnpacpi_init+0x50/0x80 do_one_initcall+0x46/0x2e0 kernel_init_freeable+0x1da/0x2f0 kernel_init+0x16/0x1b0 ret_from_fork+0x30/0x50 ret_from_fork_asm+0x1b/0x30 based on quirks for a "PNP0c01" device. Treating MMCFG as disabled is the right course of action, so no change is needed there. This was most likely exposed by fixing the Xen MSR accessors to not be silently-safe. | ||||
CVE-2025-21910 | 2025-05-04 | 4.3 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: regulatory: improve invalid hints checking Syzbot keeps reporting an issue [1] that occurs when erroneous symbols sent from userspace get through into user_alpha2[] via regulatory_hint_user() call. Such invalid regulatory hints should be rejected. While a sanity check from commit 47caf685a685 ("cfg80211: regulatory: reject invalid hints") looks to be enough to deter these very cases, there is a way to get around it due to 2 reasons. 1) The way isalpha() works, symbols other than latin lower and upper letters may be used to determine a country/domain. For instance, greek letters will also be considered upper/lower letters and for such characters isalpha() will return true as well. However, ISO-3166-1 alpha2 codes should only hold latin characters. 2) While processing a user regulatory request, between reg_process_hint_user() and regulatory_hint_user() there happens to be a call to queue_regulatory_request() which modifies letters in request->alpha2[] with toupper(). This works fine for latin symbols, less so for weird letter characters from the second part of _ctype[]. Syzbot triggers a warning in is_user_regdom_saved() by first sending over an unexpected non-latin letter that gets malformed by toupper() into a character that ends up failing isalpha() check. Prevent this by enhancing is_an_alpha2() to ensure that incoming symbols are latin letters and nothing else. [1] Syzbot report: ------------[ cut here ]------------ Unexpected user alpha2: A� WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 is_user_regdom_saved net/wireless/reg.c:440 [inline] WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_alpha2 net/wireless/reg.c:3424 [inline] WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516 Modules linked in: CPU: 1 UID: 0 PID: 964 Comm: kworker/1:2 Not tainted 6.12.0-rc5-syzkaller-00044-gc1e939a21eb1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: events_power_efficient crda_timeout_work RIP: 0010:is_user_regdom_saved net/wireless/reg.c:440 [inline] RIP: 0010:restore_alpha2 net/wireless/reg.c:3424 [inline] RIP: 0010:restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516 ... Call Trace: <TASK> crda_timeout_work+0x27/0x50 net/wireless/reg.c:542 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f2/0x390 kernel/kthread.c:389 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> | ||||
CVE-2025-21885 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix the page details for the srq created by kernel consumers While using nvme target with use_srq on, below kernel panic is noticed. [ 549.698111] bnxt_en 0000:41:00.0 enp65s0np0: FEC autoneg off encoding: Clause 91 RS(544,514) [ 566.393619] Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI .. [ 566.393799] <TASK> [ 566.393807] ? __die_body+0x1a/0x60 [ 566.393823] ? die+0x38/0x60 [ 566.393835] ? do_trap+0xe4/0x110 [ 566.393847] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393867] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393881] ? do_error_trap+0x7c/0x120 [ 566.393890] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393911] ? exc_divide_error+0x34/0x50 [ 566.393923] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393939] ? asm_exc_divide_error+0x16/0x20 [ 566.393966] ? bnxt_qplib_alloc_init_hwq+0x1d4/0x580 [bnxt_re] [ 566.393997] bnxt_qplib_create_srq+0xc9/0x340 [bnxt_re] [ 566.394040] bnxt_re_create_srq+0x335/0x3b0 [bnxt_re] [ 566.394057] ? srso_return_thunk+0x5/0x5f [ 566.394068] ? __init_swait_queue_head+0x4a/0x60 [ 566.394090] ib_create_srq_user+0xa7/0x150 [ib_core] [ 566.394147] nvmet_rdma_queue_connect+0x7d0/0xbe0 [nvmet_rdma] [ 566.394174] ? lock_release+0x22c/0x3f0 [ 566.394187] ? srso_return_thunk+0x5/0x5f Page size and shift info is set only for the user space SRQs. Set page size and page shift for kernel space SRQs also. | ||||
CVE-2025-21875 | 2025-05-04 | 3.3 Low | ||
In the Linux kernel, the following vulnerability has been resolved: mptcp: always handle address removal under msk socket lock Syzkaller reported a lockdep splat in the PM control path: WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 sock_owned_by_me include/net/sock.h:1711 [inline] WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 msk_owned_by_me net/mptcp/protocol.h:363 [inline] WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788 Modules linked in: CPU: 0 UID: 0 PID: 6693 Comm: syz.0.205 Not tainted 6.14.0-rc2-syzkaller-00303-gad1b832bf1cf #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 12/27/2024 RIP: 0010:sock_owned_by_me include/net/sock.h:1711 [inline] RIP: 0010:msk_owned_by_me net/mptcp/protocol.h:363 [inline] RIP: 0010:mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788 Code: 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 ca 7b d3 f5 eb b9 e8 c3 7b d3 f5 90 0f 0b 90 e9 dd fb ff ff e8 b5 7b d3 f5 90 <0f> 0b 90 e9 3e fb ff ff 44 89 f1 80 e1 07 38 c1 0f 8c eb fb ff ff RSP: 0000:ffffc900034f6f60 EFLAGS: 00010283 RAX: ffffffff8bee3c2b RBX: 0000000000000001 RCX: 0000000000080000 RDX: ffffc90004d42000 RSI: 000000000000a407 RDI: 000000000000a408 RBP: ffffc900034f7030 R08: ffffffff8bee37f6 R09: 0100000000000000 R10: dffffc0000000000 R11: ffffed100bcc62e4 R12: ffff88805e6316e0 R13: ffff88805e630c00 R14: dffffc0000000000 R15: ffff88805e630c00 FS: 00007f7e9a7e96c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2fd18ff8 CR3: 0000000032c24000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> mptcp_pm_remove_addr+0x103/0x1d0 net/mptcp/pm.c:59 mptcp_pm_remove_anno_addr+0x1f4/0x2f0 net/mptcp/pm_netlink.c:1486 mptcp_nl_remove_subflow_and_signal_addr net/mptcp/pm_netlink.c:1518 [inline] mptcp_pm_nl_del_addr_doit+0x118d/0x1af0 net/mptcp/pm_netlink.c:1629 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb1f/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x206/0x480 net/netlink/af_netlink.c:2543 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x8de/0xcb0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:718 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:733 ____sys_sendmsg+0x53a/0x860 net/socket.c:2573 ___sys_sendmsg net/socket.c:2627 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2659 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f7e9998cde9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f7e9a7e9038 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f7e99ba5fa0 RCX: 00007f7e9998cde9 RDX: 000000002000c094 RSI: 0000400000000000 RDI: 0000000000000007 RBP: 00007f7e99a0e2a0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f7e99ba5fa0 R15: 00007fff49231088 Indeed the PM can try to send a RM_ADDR over a msk without acquiring first the msk socket lock. The bugged code-path comes from an early optimization: when there are no subflows, the PM should (usually) not send RM_ADDR notifications. The above statement is incorrect, as without locks another process could concur ---truncated--- | ||||
CVE-2025-21830 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: landlock: Handle weird files A corrupted filesystem (e.g. bcachefs) might return weird files. Instead of throwing a warning and allowing access to such file, treat them as regular files. | ||||
CVE-2025-21828 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: don't flush non-uploaded STAs If STA state is pre-moved to AUTHORIZED (such as in IBSS scenarios) and insertion fails, the station is freed. In this case, the driver never knew about the station, so trying to flush it is unexpected and may crash. Check if the sta was uploaded to the driver before and fix this. | ||||
CVE-2025-21810 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: driver core: class: Fix wild pointer dereferences in API class_dev_iter_next() There are a potential wild pointer dereferences issue regarding APIs class_dev_iter_(init|next|exit)(), as explained by below typical usage: // All members of @iter are wild pointers. struct class_dev_iter iter; // class_dev_iter_init(@iter, @class, ...) checks parameter @class for // potential class_to_subsys() error, and it returns void type and does // not initialize its output parameter @iter, so caller can not detect // the error and continues to invoke class_dev_iter_next(@iter) even if // @iter still contains wild pointers. class_dev_iter_init(&iter, ...); // Dereference these wild pointers in @iter here once suffer the error. while (dev = class_dev_iter_next(&iter)) { ... }; // Also dereference these wild pointers here. class_dev_iter_exit(&iter); Actually, all callers of these APIs have such usage pattern in kernel tree. Fix by: - Initialize output parameter @iter by memset() in class_dev_iter_init() and give callers prompt by pr_crit() for the error. - Check if @iter is valid in class_dev_iter_next(). | ||||
CVE-2025-21806 | 2025-05-04 | 3.3 Low | ||
In the Linux kernel, the following vulnerability has been resolved: net: let net.core.dev_weight always be non-zero The following problem was encountered during stability test: (NULL net_device): NAPI poll function process_backlog+0x0/0x530 \ returned 1, exceeding its budget of 0. ------------[ cut here ]------------ list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \ next=ffff88905f746e40. WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \ __list_add_valid_or_report+0xf3/0x130 CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+ RIP: 0010:__list_add_valid_or_report+0xf3/0x130 Call Trace: ? __warn+0xcd/0x250 ? __list_add_valid_or_report+0xf3/0x130 enqueue_to_backlog+0x923/0x1070 netif_rx_internal+0x92/0x2b0 __netif_rx+0x15/0x170 loopback_xmit+0x2ef/0x450 dev_hard_start_xmit+0x103/0x490 __dev_queue_xmit+0xeac/0x1950 ip_finish_output2+0x6cc/0x1620 ip_output+0x161/0x270 ip_push_pending_frames+0x155/0x1a0 raw_sendmsg+0xe13/0x1550 __sys_sendto+0x3bf/0x4e0 __x64_sys_sendto+0xdc/0x1b0 do_syscall_64+0x5b/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e The reproduction command is as follows: sysctl -w net.core.dev_weight=0 ping 127.0.0.1 This is because when the napi's weight is set to 0, process_backlog() may return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this napi to be re-polled in net_rx_action() until __do_softirq() times out. Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can be retriggered in enqueue_to_backlog(), causing this issue. Making the napi's weight always non-zero solves this problem. Triggering this issue requires system-wide admin (setting is not namespaced). | ||||
CVE-2025-21799 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: fix freeing IRQ in am65_cpsw_nuss_remove_tx_chns() When getting the IRQ we use k3_udma_glue_tx_get_irq() which returns negative error value on error. So not NULL check is not sufficient to deteremine if IRQ is valid. Check that IRQ is greater then zero to ensure it is valid. There is no issue at probe time but at runtime user can invoke .set_channels which results in the following call chain. am65_cpsw_set_channels() am65_cpsw_nuss_update_tx_rx_chns() am65_cpsw_nuss_remove_tx_chns() am65_cpsw_nuss_init_tx_chns() At this point if am65_cpsw_nuss_init_tx_chns() fails due to k3_udma_glue_tx_get_irq() then tx_chn->irq will be set to a negative value. Then, at subsequent .set_channels with higher channel count we will attempt to free an invalid IRQ in am65_cpsw_nuss_remove_tx_chns() leading to a kernel warning. The issue is present in the original commit that introduced this driver, although there, am65_cpsw_nuss_update_tx_rx_chns() existed as am65_cpsw_nuss_update_tx_chns(). | ||||
CVE-2025-21750 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Check the return value of of_property_read_string_index() Somewhen between 6.10 and 6.11 the driver started to crash on my MacBookPro14,3. The property doesn't exist and 'tmp' remains uninitialized, so we pass a random pointer to devm_kstrdup(). The crash I am getting looks like this: BUG: unable to handle page fault for address: 00007f033c669379 PF: supervisor read access in kernel mode PF: error_code(0x0001) - permissions violation PGD 8000000101341067 P4D 8000000101341067 PUD 101340067 PMD 1013bb067 PTE 800000010aee9025 Oops: Oops: 0001 [#1] SMP PTI CPU: 4 UID: 0 PID: 827 Comm: (udev-worker) Not tainted 6.11.8-gentoo #1 Hardware name: Apple Inc. MacBookPro14,3/Mac-551B86E5744E2388, BIOS 529.140.2.0.0 06/23/2024 RIP: 0010:strlen+0x4/0x30 Code: f7 75 ec 31 c0 c3 cc cc cc cc 48 89 f8 c3 cc cc cc cc 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <80> 3f 00 74 14 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 cc RSP: 0018:ffffb4aac0683ad8 EFLAGS: 00010202 RAX: 00000000ffffffea RBX: 00007f033c669379 RCX: 0000000000000001 RDX: 0000000000000cc0 RSI: 00007f033c669379 RDI: 00007f033c669379 RBP: 00000000ffffffea R08: 0000000000000000 R09: 00000000c0ba916a R10: ffffffffffffffff R11: ffffffffb61ea260 R12: ffff91f7815b50c8 R13: 0000000000000cc0 R14: ffff91fafefffe30 R15: ffffb4aac0683b30 FS: 00007f033ccbe8c0(0000) GS:ffff91faeed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f033c669379 CR3: 0000000107b1e004 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x149/0x4c0 ? raw_spin_rq_lock_nested+0xe/0x20 ? sched_balance_newidle+0x22b/0x3c0 ? update_load_avg+0x78/0x770 ? exc_page_fault+0x6f/0x150 ? asm_exc_page_fault+0x26/0x30 ? __pfx_pci_conf1_write+0x10/0x10 ? strlen+0x4/0x30 devm_kstrdup+0x25/0x70 brcmf_of_probe+0x273/0x350 [brcmfmac] | ||||
CVE-2025-21712 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: md/md-bitmap: Synchronize bitmap_get_stats() with bitmap lifetime After commit ec6bb299c7c3 ("md/md-bitmap: add 'sync_size' into struct md_bitmap_stats"), following panic is reported: Oops: general protection fault, probably for non-canonical address RIP: 0010:bitmap_get_stats+0x2b/0xa0 Call Trace: <TASK> md_seq_show+0x2d2/0x5b0 seq_read_iter+0x2b9/0x470 seq_read+0x12f/0x180 proc_reg_read+0x57/0xb0 vfs_read+0xf6/0x380 ksys_read+0x6c/0xf0 do_syscall_64+0x82/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Root cause is that bitmap_get_stats() can be called at anytime if mddev is still there, even if bitmap is destroyed, or not fully initialized. Deferenceing bitmap in this case can crash the kernel. Meanwhile, the above commit start to deferencing bitmap->storage, make the problem easier to trigger. Fix the problem by protecting bitmap_get_stats() with bitmap_info.mutex. | ||||
CVE-2025-21706 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: only set fullmesh for subflow endp With the in-kernel path-manager, it is possible to change the 'fullmesh' flag. The code in mptcp_pm_nl_fullmesh() expects to change it only on 'subflow' endpoints, to recreate more or less subflows using the linked address. Unfortunately, the set_flags() hook was a bit more permissive, and allowed 'implicit' endpoints to get the 'fullmesh' flag while it is not allowed before. That's what syzbot found, triggering the following warning: WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 __mark_subflow_endp_available net/mptcp/pm_netlink.c:1496 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_pm_nl_fullmesh net/mptcp/pm_netlink.c:1980 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_nl_set_flags net/mptcp/pm_netlink.c:2003 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_pm_nl_set_flags+0x974/0xdc0 net/mptcp/pm_netlink.c:2064 Modules linked in: CPU: 0 UID: 0 PID: 6499 Comm: syz.1.413 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__mark_subflow_endp_available net/mptcp/pm_netlink.c:1496 [inline] RIP: 0010:mptcp_pm_nl_fullmesh net/mptcp/pm_netlink.c:1980 [inline] RIP: 0010:mptcp_nl_set_flags net/mptcp/pm_netlink.c:2003 [inline] RIP: 0010:mptcp_pm_nl_set_flags+0x974/0xdc0 net/mptcp/pm_netlink.c:2064 Code: 01 00 00 49 89 c5 e8 fb 45 e8 f5 e9 b8 fc ff ff e8 f1 45 e8 f5 4c 89 f7 be 03 00 00 00 e8 44 1d 0b f9 eb a0 e8 dd 45 e8 f5 90 <0f> 0b 90 e9 17 ff ff ff 89 d9 80 e1 07 38 c1 0f 8c c9 fc ff ff 48 RSP: 0018:ffffc9000d307240 EFLAGS: 00010293 RAX: ffffffff8bb72e03 RBX: 0000000000000000 RCX: ffff88807da88000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc9000d307430 R08: ffffffff8bb72cf0 R09: 1ffff1100b842a5e R10: dffffc0000000000 R11: ffffed100b842a5f R12: ffff88801e2e5ac0 R13: ffff88805c214800 R14: ffff88805c2152e8 R15: 1ffff1100b842a5d FS: 00005555619f6500(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020002840 CR3: 00000000247e6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2542 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f5fe8785d29 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fff571f5558 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f5fe8975fa0 RCX: 00007f5fe8785d29 RDX: 0000000000000000 RSI: 0000000020000480 RDI: 0000000000000007 RBP: 00007f5fe8801b08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f5fe8975fa0 R14: 00007f5fe8975fa0 R15: 000000 ---truncated--- | ||||
CVE-2025-21696 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm: clear uffd-wp PTE/PMD state on mremap() When mremap()ing a memory region previously registered with userfaultfd as write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in flag clearing leads to a mismatch between the vma flags (which have uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to trigger a warning in page_table_check_pte_flags() due to setting the pte to writable while uffd-wp is still set. Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any such mremap() so that the values are consistent with the existing clearing of VM_UFFD_WP. Be careful to clear the logical flag regardless of its physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE, huge PMD and hugetlb paths. |