Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15858 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-68296 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm, fbcon, vga_switcheroo: Avoid race condition in fbcon setup Protect vga_switcheroo_client_fb_set() with console lock. Avoids OOB access in fbcon_remap_all(). Without holding the console lock the call races with switching outputs. VGA switcheroo calls fbcon_remap_all() when switching clients. The fbcon function uses struct fb_info.node, which is set by register_framebuffer(). As the fb-helper code currently sets up VGA switcheroo before registering the framebuffer, the value of node is -1 and therefore not a legal value. For example, fbcon uses the value within set_con2fb_map() [1] as an index into an array. Moving vga_switcheroo_client_fb_set() after register_framebuffer() can result in VGA switching that does not switch fbcon correctly. Therefore move vga_switcheroo_client_fb_set() under fbcon_fb_registered(), which already holds the console lock. Fbdev calls fbcon_fb_registered() from within register_framebuffer(). Serializes the helper with VGA switcheroo's call to fbcon_remap_all(). Although vga_switcheroo_client_fb_set() takes an instance of struct fb_info as parameter, it really only needs the contained fbcon state. Moving the call to fbcon initialization is therefore cleaner than before. Only amdgpu, i915, nouveau and radeon support vga_switcheroo. For all other drivers, this change does nothing.
CVE-2025-68240 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: avoid having an active sc_timer before freeing sci Because kthread_stop did not stop sc_task properly and returned -EINTR, the sc_timer was not properly closed, ultimately causing the problem [1] reported by syzbot when freeing sci due to the sc_timer not being closed. Because the thread sc_task main function nilfs_segctor_thread() returns 0 when it succeeds, when the return value of kthread_stop() is not 0 in nilfs_segctor_destroy(), we believe that it has not properly closed sc_timer. We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and set the value of sc_task to NULL under the protection of lock sc_state_lock, so as to avoid the issue caused by sc_timer not being properly shutdowned. [1] ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout Call trace: nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline] nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877 nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509
CVE-2025-68242 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix LTP test failures when timestamps are delegated The utimes01 and utime06 tests fail when delegated timestamps are enabled, specifically in subtests that modify the atime and mtime fields using the 'nobody' user ID. The problem can be reproduced as follow: # echo "/media *(rw,no_root_squash,sync)" >> /etc/exports # export -ra # mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir # cd /opt/ltp # ./runltp -d /tmpdir -s utimes01 # ./runltp -d /tmpdir -s utime06 This issue occurs because nfs_setattr does not verify the inode's UID against the caller's fsuid when delegated timestamps are permitted for the inode. This patch adds the UID check and if it does not match then the request is sent to the server for permission checking.
CVE-2025-68303 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: intel: punit_ipc: fix memory corruption This passes the address of the pointer "&punit_ipcdev" when the intent was to pass the pointer itself "punit_ipcdev" (without the ampersand). This means that the: complete(&ipcdev->cmd_complete); in intel_punit_ioc() will write to a wrong memory address corrupting it.
CVE-2025-68259 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Don't skip unrelated instruction if INT3/INTO is replaced When re-injecting a soft interrupt from an INT3, INT0, or (select) INTn instruction, discard the exception and retry the instruction if the code stream is changed (e.g. by a different vCPU) between when the CPU executes the instruction and when KVM decodes the instruction to get the next RIP. As effectively predicted by commit 6ef88d6e36c2 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction"), failure to verify that the correct INTn instruction was decoded can effectively clobber guest state due to decoding the wrong instruction and thus specifying the wrong next RIP. The bug most often manifests as "Oops: int3" panics on static branch checks in Linux guests. Enabling or disabling a static branch in Linux uses the kernel's "text poke" code patching mechanism. To modify code while other CPUs may be executing that code, Linux (temporarily) replaces the first byte of the original instruction with an int3 (opcode 0xcc), then patches in the new code stream except for the first byte, and finally replaces the int3 with the first byte of the new code stream. If a CPU hits the int3, i.e. executes the code while it's being modified, then the guest kernel must look up the RIP to determine how to handle the #BP, e.g. by emulating the new instruction. If the RIP is incorrect, then this lookup fails and the guest kernel panics. The bug reproduces almost instantly by hacking the guest kernel to repeatedly check a static branch[1] while running a drgn script[2] on the host to constantly swap out the memory containing the guest's TSS. [1]: https://gist.github.com/osandov/44d17c51c28c0ac998ea0334edf90b5a [2]: https://gist.github.com/osandov/10e45e45afa29b11e0c7209247afc00b
CVE-2025-68218 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: fix lockdep WARN due to partition scan work Blktests test cases nvme/014, 057 and 058 fail occasionally due to a lockdep WARN. As reported in the Closes tag URL, the WARN indicates that a deadlock can happen due to the dependency among disk->open_mutex, kblockd workqueue completion and partition_scan_work completion. To avoid the lockdep WARN and the potential deadlock, cut the dependency by running the partition_scan_work not by kblockd workqueue but by nvme_wq.
CVE-2025-68284 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() The len field originates from untrusted network packets. Boundary checks have been added to prevent potential out-of-bounds writes when decrypting the connection secret or processing service tickets. [ idryomov: changelog ]
CVE-2025-68258 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: comedi: multiq3: sanitize config options in multiq3_attach() Syzbot identified an issue [1] in multiq3_attach() that induces a task timeout due to open() or COMEDI_DEVCONFIG ioctl operations, specifically, in the case of multiq3 driver. This problem arose when syzkaller managed to craft weird configuration options used to specify the number of channels in encoder subdevice. If a particularly great number is passed to s->n_chan in multiq3_attach() via it->options[2], then multiple calls to multiq3_encoder_reset() at the end of driver-specific attach() method will be running for minutes, thus blocking tasks and affected devices as well. While this issue is most likely not too dangerous for real-life devices, it still makes sense to sanitize configuration inputs. Enable a sensible limit on the number of encoder chips (4 chips max, each with 2 channels) to stop this behaviour from manifesting. [1] Syzbot crash: INFO: task syz.2.19:6067 blocked for more than 143 seconds. ... Call Trace: <TASK> context_switch kernel/sched/core.c:5254 [inline] __schedule+0x17c4/0x4d60 kernel/sched/core.c:6862 __schedule_loop kernel/sched/core.c:6944 [inline] schedule+0x165/0x360 kernel/sched/core.c:6959 schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016 __mutex_lock_common kernel/locking/mutex.c:676 [inline] __mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760 comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868 chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414 do_dentry_open+0x953/0x13f0 fs/open.c:965 vfs_open+0x3b/0x340 fs/open.c:1097 ...
CVE-2025-68282 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: udc: fix use-after-free in usb_gadget_state_work A race condition during gadget teardown can lead to a use-after-free in usb_gadget_state_work(), as reported by KASAN: BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0 Workqueue: events usb_gadget_state_work The fundamental race occurs because a concurrent event (e.g., an interrupt) can call usb_gadget_set_state() and schedule gadget->work at any time during the cleanup process in usb_del_gadget(). Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after device removal") attempted to fix this by moving flush_work() to after device_del(). However, this does not fully solve the race, as a new work item can still be scheduled *after* flush_work() completes but before the gadget's memory is freed, leading to the same use-after-free. This patch fixes the race condition robustly by introducing a 'teardown' flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is set during cleanup in usb_del_gadget() *before* calling flush_work() to prevent any new work from being scheduled once cleanup has commenced. The scheduling site, usb_gadget_set_state(), now checks this flag under the lock before queueing the work, thus safely closing the race window.
CVE-2025-68294 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/net: ensure vectored buffer node import is tied to notification When support for vectored registered buffers was added, the import itself is using 'req' rather than the notification io_kiocb, sr->notif. For non-vectored imports, sr->notif is correctly used. This is important as the lifetime of the two may be different. Use the correct io_kiocb for the vectored buffer import.
CVE-2025-68293 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
CVE-2025-68232 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: veth: more robust handing of race to avoid txq getting stuck Commit dc82a33297fc ("veth: apply qdisc backpressure on full ptr_ring to reduce TX drops") introduced a race condition that can lead to a permanently stalled TXQ. This was observed in production on ARM64 systems (Ampere Altra Max). The race occurs in veth_xmit(). The producer observes a full ptr_ring and stops the queue (netif_tx_stop_queue()). The subsequent conditional logic, intended to re-wake the queue if the consumer had just emptied it (if (__ptr_ring_empty(...)) netif_tx_wake_queue()), can fail. This leads to a "lost wakeup" where the TXQ remains stopped (QUEUE_STATE_DRV_XOFF) and traffic halts. This failure is caused by an incorrect use of the __ptr_ring_empty() API from the producer side. As noted in kernel comments, this check is not guaranteed to be correct if a consumer is operating on another CPU. The empty test is based on ptr_ring->consumer_head, making it reliable only for the consumer. Using this check from the producer side is fundamentally racy. This patch fixes the race by adopting the more robust logic from an earlier version V4 of the patchset, which always flushed the peer: (1) In veth_xmit(), the racy conditional wake-up logic and its memory barrier are removed. Instead, after stopping the queue, we unconditionally call __veth_xdp_flush(rq). This guarantees that the NAPI consumer is scheduled, making it solely responsible for re-waking the TXQ. This handles the race where veth_poll() consumes all packets and completes NAPI *before* veth_xmit() on the producer side has called netif_tx_stop_queue. The __veth_xdp_flush(rq) will observe rx_notify_masked is false and schedule NAPI. (2) On the consumer side, the logic for waking the peer TXQ is moved out of veth_xdp_rcv() and placed at the end of the veth_poll() function. This placement is part of fixing the race, as the netif_tx_queue_stopped() check must occur after rx_notify_masked is potentially set to false during NAPI completion. This handles the race where veth_poll() consumes all packets, but haven't finished (rx_notify_masked is still true). The producer veth_xmit() stops the TXQ and __veth_xdp_flush(rq) will observe rx_notify_masked is true, meaning not starting NAPI. Then veth_poll() change rx_notify_masked to false and stops NAPI. Before exiting veth_poll() will observe TXQ is stopped and wake it up.
CVE-2025-68305 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Prevent race in socket write iter and sock bind There is a potential race condition between sock bind and socket write iter. bind may free the same cmd via mgmt_pending before write iter sends the cmd, just as syzbot reported in UAF[1]. Here we use hci_dev_lock to synchronize the two, thereby avoiding the UAF mentioned in [1]. [1] syzbot reported: BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 Read of size 8 at addr ffff888077164818 by task syz.0.17/5989 Call Trace: mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Allocated by task 5989: mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Freed by task 5991: mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
CVE-2025-68261 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: add i_data_sem protection in ext4_destroy_inline_data_nolock() Fix a race between inline data destruction and block mapping. The function ext4_destroy_inline_data_nolock() changes the inode data layout by clearing EXT4_INODE_INLINE_DATA and setting EXT4_INODE_EXTENTS. At the same time, another thread may execute ext4_map_blocks(), which tests EXT4_INODE_EXTENTS to decide whether to call ext4_ext_map_blocks() or ext4_ind_map_blocks(). Without i_data_sem protection, ext4_ind_map_blocks() may receive inode with EXT4_INODE_EXTENTS flag and triggering assert. kernel BUG at fs/ext4/indirect.c:546! EXT4-fs (loop2): unmounting filesystem. invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:ext4_ind_map_blocks.cold+0x2b/0x5a fs/ext4/indirect.c:546 Call Trace: <TASK> ext4_map_blocks+0xb9b/0x16f0 fs/ext4/inode.c:681 _ext4_get_block+0x242/0x590 fs/ext4/inode.c:822 ext4_block_write_begin+0x48b/0x12c0 fs/ext4/inode.c:1124 ext4_write_begin+0x598/0xef0 fs/ext4/inode.c:1255 ext4_da_write_begin+0x21e/0x9c0 fs/ext4/inode.c:3000 generic_perform_write+0x259/0x5d0 mm/filemap.c:3846 ext4_buffered_write_iter+0x15b/0x470 fs/ext4/file.c:285 ext4_file_write_iter+0x8e0/0x17f0 fs/ext4/file.c:679 call_write_iter include/linux/fs.h:2271 [inline] do_iter_readv_writev+0x212/0x3c0 fs/read_write.c:735 do_iter_write+0x186/0x710 fs/read_write.c:861 vfs_iter_write+0x70/0xa0 fs/read_write.c:902 iter_file_splice_write+0x73b/0xc90 fs/splice.c:685 do_splice_from fs/splice.c:763 [inline] direct_splice_actor+0x10f/0x170 fs/splice.c:950 splice_direct_to_actor+0x33a/0xa10 fs/splice.c:896 do_splice_direct+0x1a9/0x280 fs/splice.c:1002 do_sendfile+0xb13/0x12c0 fs/read_write.c:1255 __do_sys_sendfile64 fs/read_write.c:1323 [inline] __se_sys_sendfile64 fs/read_write.c:1309 [inline] __x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8
CVE-2025-68226 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix incomplete backport in cfids_invalidation_worker() The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in smb2_close_cached_fid()") was an incomplete backport and missed one kref_put() call in cfids_invalidation_worker() that should have been converted to close_cached_dir().
CVE-2025-68256 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix out-of-bounds read in rtw_get_ie() parser The Information Element (IE) parser rtw_get_ie() trusted the length byte of each IE without validating that the IE body (len bytes after the 2-byte header) fits inside the remaining frame buffer. A malformed frame can advertise an IE length larger than the available data, causing the parser to increment its pointer beyond the buffer end. This results in out-of-bounds reads or, depending on the pattern, an infinite loop. Fix by validating that (offset + 2 + len) does not exceed the limit before accepting the IE or advancing to the next element. This prevents OOB reads and ensures the parser terminates safely on malformed frames.
CVE-2025-68308 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: kvaser_usb: leaf: Fix potential infinite loop in command parsers The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback` functions contain logic to zero-length commands. These commands are used to align data to the USB endpoint's wMaxPacketSize boundary. The driver attempts to skip these placeholders by aligning the buffer position `pos` to the next packet boundary using `round_up()` function. However, if zero-length command is found exactly on a packet boundary (i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up` function will return the unchanged value of `pos`. This prevents `pos` to be increased, causing an infinite loop in the parsing logic. This patch fixes this in the function by using `pos + 1` instead. This ensures that even if `pos` is on a boundary, the calculation is based on `pos + 1`, forcing `round_up()` to always return the next aligned boundary.
CVE-2025-68224 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix a regression triggered by scsi_host_busy() Commit 995412e23bb2 ("blk-mq: Replace tags->lock with SRCU for tag iterators") introduced the following regression: Call trace: __srcu_read_lock+0x30/0x80 (P) blk_mq_tagset_busy_iter+0x44/0x300 scsi_host_busy+0x38/0x70 ufshcd_print_host_state+0x34/0x1bc ufshcd_link_startup.constprop.0+0xe4/0x2e0 ufshcd_init+0x944/0xf80 ufshcd_pltfrm_init+0x504/0x820 ufs_rockchip_probe+0x2c/0x88 platform_probe+0x5c/0xa4 really_probe+0xc0/0x38c __driver_probe_device+0x7c/0x150 driver_probe_device+0x40/0x120 __driver_attach+0xc8/0x1e0 bus_for_each_dev+0x7c/0xdc driver_attach+0x24/0x30 bus_add_driver+0x110/0x230 driver_register+0x68/0x130 __platform_driver_register+0x20/0x2c ufs_rockchip_pltform_init+0x1c/0x28 do_one_initcall+0x60/0x1e0 kernel_init_freeable+0x248/0x2c4 kernel_init+0x20/0x140 ret_from_fork+0x10/0x20 Fix this regression by making scsi_host_busy() check whether the SCSI host tag set has already been initialized. tag_set->ops is set by scsi_mq_setup_tags() just before blk_mq_alloc_tag_set() is called. This fix is based on the assumption that scsi_host_busy() and scsi_mq_setup_tags() calls are serialized. This is the case in the UFS driver.
CVE-2025-68260 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: rust_binder: fix race condition on death_list Rust Binder contains the following unsafe operation: // SAFETY: A `NodeDeath` is never inserted into the death list // of any node other than its owner, so it is either in this // death list or in no death list. unsafe { node_inner.death_list.remove(self) }; This operation is unsafe because when touching the prev/next pointers of a list element, we have to ensure that no other thread is also touching them in parallel. If the node is present in the list that `remove` is called on, then that is fine because we have exclusive access to that list. If the node is not in any list, then it's also ok. But if it's present in a different list that may be accessed in parallel, then that may be a data race on the prev/next pointers. And unfortunately that is exactly what is happening here. In Node::release, we: 1. Take the lock. 2. Move all items to a local list on the stack. 3. Drop the lock. 4. Iterate the local list on the stack. Combined with threads using the unsafe remove method on the original list, this leads to memory corruption of the prev/next pointers. This leads to crashes like this one: Unable to handle kernel paging request at virtual address 000bb9841bcac70e Mem abort info: ESR = 0x0000000096000044 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [000bb9841bcac70e] address between user and kernel address ranges Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP google-cdd 538c004.gcdd: context saved(CPU:1) item - log_kevents is disabled Modules linked in: ... rust_binder CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: MUSTANG PVT 1.0 based on LGA (DT) Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder] pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder] lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder] sp : ffffffc09b433ac0 x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448 x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578 x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40 x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00 x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0 x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0 x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000 x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30 x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00 Call trace: _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc] process_scheduled_works+0x1c4/0x45c worker_thread+0x32c/0x3e8 kthread+0x11c/0x1c8 ret_from_fork+0x10/0x20 Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509) ---[ end trace 0000000000000000 ]--- Thus, modify Node::release to pop items directly off the original list.
CVE-2025-68289 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_eem: Fix memory leak in eem_unwrap The existing code did not handle the failure case of usb_ep_queue in the command path, potentially leading to memory leaks. Improve error handling to free all allocated resources on usb_ep_queue failure. This patch continues to use goto logic for error handling, as the existing error handling is complex and not easily adaptable to auto-cleanup helpers. kmemleak results: unreferenced object 0xffffff895a512300 (size 240): backtrace: slab_post_alloc_hook+0xbc/0x3a4 kmem_cache_alloc+0x1b4/0x358 skb_clone+0x90/0xd8 eem_unwrap+0x1cc/0x36c unreferenced object 0xffffff8a157f4000 (size 256): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 dwc3_gadget_ep_alloc_request+0x58/0x11c usb_ep_alloc_request+0x40/0xe4 eem_unwrap+0x204/0x36c unreferenced object 0xffffff8aadbaac00 (size 128): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc __kmalloc+0x64/0x1a8 eem_unwrap+0x218/0x36c unreferenced object 0xffffff89ccef3500 (size 64): backtrace: slab_post_alloc_hook+0xbc/0x3a4 __kmem_cache_alloc_node+0x1b4/0x2dc kmalloc_trace+0x48/0x140 eem_unwrap+0x238/0x36c