Filtered by vendor Linux
Subscriptions
Total
15937 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-68336 | 1 Linux | 1 Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: locking/spinlock/debug: Fix data-race in do_raw_write_lock KCSAN reports: BUG: KCSAN: data-race in do_raw_write_lock / do_raw_write_lock write (marked) to 0xffff800009cf504c of 4 bytes by task 1102 on cpu 1: do_raw_write_lock+0x120/0x204 _raw_write_lock_irq do_exit call_usermodehelper_exec_async ret_from_fork read to 0xffff800009cf504c of 4 bytes by task 1103 on cpu 0: do_raw_write_lock+0x88/0x204 _raw_write_lock_irq do_exit call_usermodehelper_exec_async ret_from_fork value changed: 0xffffffff -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 1103 Comm: kworker/u4:1 6.1.111 Commit 1a365e822372 ("locking/spinlock/debug: Fix various data races") has adressed most of these races, but seems to be not consistent/not complete. >From do_raw_write_lock() only debug_write_lock_after() part has been converted to WRITE_ONCE(), but not debug_write_lock_before() part. Do it now. | ||||
| CVE-2025-68335 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel() Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from the fact that in case of early device detach via pcl818_detach(), subdevice dev->read_subdev may not have initialized its pointer to &struct comedi_async as intended. Thus, any such dereferencing of &s->async->cmd will lead to general protection fault and kernel crash. Mitigate this problem by removing a call to pcl818_ai_cancel() from pcl818_detach() altogether. This way, if the subdevice setups its support for async commands, everything async-related will be handled via subdevice's own ->cancel() function in comedi_device_detach_locked() even before pcl818_detach(). If no support for asynchronous commands is provided, there is no need to cancel anything either. [1] Syzbot crash: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f] CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762 ... Call Trace: <TASK> pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115 comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207 do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline] comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] ... | ||||
| CVE-2025-68334 | 1 Linux | 1 Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd/pmc: Add support for Van Gogh SoC The ROG Xbox Ally (non-X) SoC features a similar architecture to the Steam Deck. While the Steam Deck supports S3 (s2idle causes a crash), this support was dropped by the Xbox Ally which only S0ix suspend. Since the handler is missing here, this causes the device to not suspend and the AMD GPU driver to crash while trying to resume afterwards due to a power hang. | ||||
| CVE-2025-68333 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix possible deadlock in the deferred_irq_workfn() For PREEMPT_RT=y kernels, the deferred_irq_workfn() is executed in the per-cpu irq_work/* task context and not disable-irq, if the rq returned by container_of() is current CPU's rq, the following scenarios may occur: lock(&rq->__lock); <Interrupt> lock(&rq->__lock); This commit use IRQ_WORK_INIT_HARD() to replace init_irq_work() to initialize rq->scx.deferred_irq_work, make the deferred_irq_workfn() is always invoked in hard-irq context. | ||||
| CVE-2025-68332 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: comedi: c6xdigio: Fix invalid PNP driver unregistration The Comedi low-level driver "c6xdigio" seems to be for a parallel port connected device. When the Comedi core calls the driver's Comedi "attach" handler `c6xdigio_attach()` to configure a Comedi to use this driver, it tries to enable the parallel port PNP resources by registering a PNP driver with `pnp_register_driver()`, but ignores the return value. (The `struct pnp_driver` it uses has only the `name` and `id_table` members filled in.) The driver's Comedi "detach" handler `c6xdigio_detach()` unconditionally unregisters the PNP driver with `pnp_unregister_driver()`. It is possible for `c6xdigio_attach()` to return an error before it calls `pnp_register_driver()` and it is possible for the call to `pnp_register_driver()` to return an error (that is ignored). In both cases, the driver should not be calling `pnp_unregister_driver()` as it does in `c6xdigio_detach()`. (Note that `c6xdigio_detach()` will be called by the Comedi core if `c6xdigio_attach()` returns an error, or if the Comedi core decides to detach the Comedi device from the driver for some other reason.) The unconditional call to `pnp_unregister_driver()` without a previous successful call to `pnp_register_driver()` will cause `driver_unregister()` to issue a warning "Unexpected driver unregister!". This was detected by Syzbot [1]. Also, the PNP driver registration and unregistration should be done at module init and exit time, respectively, not when attaching or detaching Comedi devices to the driver. (There might be more than one Comedi device being attached to the driver, although that is unlikely.) Change the driver to do the PNP driver registration at module init time, and the unregistration at module exit time. Since `c6xdigio_detach()` now only calls `comedi_legacy_detach()`, remove the function and change the Comedi driver "detach" handler to `comedi_legacy_detach`. ------------------------------------------- [1] Syzbot sample crash report: Unexpected driver unregister! WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister drivers/base/driver.c:273 [inline] WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister+0x90/0xb0 drivers/base/driver.c:270 Modules linked in: CPU: 0 UID: 0 PID: 5970 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 RIP: 0010:driver_unregister drivers/base/driver.c:273 [inline] RIP: 0010:driver_unregister+0x90/0xb0 drivers/base/driver.c:270 Code: 48 89 ef e8 c2 e6 82 fc 48 89 df e8 3a 93 ff ff 5b 5d e9 c3 6d d9 fb e8 be 6d d9 fb 90 48 c7 c7 e0 f8 1f 8c e8 51 a2 97 fb 90 <0f> 0b 90 90 5b 5d e9 a5 6d d9 fb e8 e0 f4 41 fc eb 94 e8 d9 f4 41 RSP: 0018:ffffc9000373f9a0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffff8ff24720 RCX: ffffffff817b6ee8 RDX: ffff88807c932480 RSI: ffffffff817b6ef5 RDI: 0000000000000001 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8ff24660 R13: dffffc0000000000 R14: 0000000000000000 R15: ffff88814cca0000 FS: 000055556dab1500(0000) GS:ffff8881249d9000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f77f285cd0 CR3: 000000007d871000 CR4: 00000000003526f0 Call Trace: <TASK> comedi_device_detach_locked+0x12f/0xa50 drivers/comedi/drivers.c:207 comedi_device_detach+0x67/0xb0 drivers/comedi/drivers.c:215 comedi_device_attach+0x43d/0x900 drivers/comedi/drivers.c:1011 do_devconfig_ioctl+0x1b1/0x710 drivers/comedi/comedi_fops.c:872 comedi_unlocked_ioctl+0x165d/0x2f00 drivers/comedi/comedi_fops.c:2178 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_sys ---truncated--- | ||||
| CVE-2025-68331 | 1 Linux | 1 Linux Kernel | 2025-12-22 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: usb: uas: fix urb unmapping issue when the uas device is remove during ongoing data transfer When a UAS device is unplugged during data transfer, there is a probability of a system panic occurring. The root cause is an access to an invalid memory address during URB callback handling. Specifically, this happens when the dma_direct_unmap_sg() function is called within the usb_hcd_unmap_urb_for_dma() interface, but the sg->dma_address field is 0 and the sg data structure has already been freed. The SCSI driver sends transfer commands by invoking uas_queuecommand_lck() in uas.c, using the uas_submit_urbs() function to submit requests to USB. Within the uas_submit_urbs() implementation, three URBs (sense_urb, data_urb, and cmd_urb) are sequentially submitted. Device removal may occur at any point during uas_submit_urbs execution, which may result in URB submission failure. However, some URBs might have been successfully submitted before the failure, and uas_submit_urbs will return the -ENODEV error code in this case. The current error handling directly calls scsi_done(). In the SCSI driver, this eventually triggers scsi_complete() to invoke scsi_end_request() for releasing the sgtable. The successfully submitted URBs, when being unlinked to giveback, call usb_hcd_unmap_urb_for_dma() in hcd.c, leading to exceptions during sg unmapping operations since the sg data structure has already been freed. This patch modifies the error condition check in the uas_submit_urbs() function. When a UAS device is removed but one or more URBs have already been successfully submitted to USB, it avoids immediately invoking scsi_done() and save the cmnd to devinfo->cmnd array. If the successfully submitted URBs is completed before devinfo->resetting being set, then the scsi_done() function will be called within uas_try_complete() after all pending URB operations are finalized. Otherwise, the scsi_done() function will be called within uas_zap_pending(), which is executed after usb_kill_anchored_urbs(). The error handling only takes effect when uas_queuecommand_lck() calls uas_submit_urbs() and returns the error value -ENODEV . In this case, the device is disconnected, and the flow proceeds to uas_disconnect(), where uas_zap_pending() is invoked to call uas_try_complete(). | ||||
| CVE-2025-68330 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: iio: accel: bmc150: Fix irq assumption regression The code in bmc150-accel-core.c unconditionally calls bmc150_accel_set_interrupt() in the iio_buffer_setup_ops, such as on the runtime PM resume path giving a kernel splat like this if the device has no interrupts: Unable to handle kernel NULL pointer dereference at virtual address 00000001 when read PC is at bmc150_accel_set_interrupt+0x98/0x194 LR is at __pm_runtime_resume+0x5c/0x64 (...) Call trace: bmc150_accel_set_interrupt from bmc150_accel_buffer_postenable+0x40/0x108 bmc150_accel_buffer_postenable from __iio_update_buffers+0xbe0/0xcbc __iio_update_buffers from enable_store+0x84/0xc8 enable_store from kernfs_fop_write_iter+0x154/0x1b4 This bug seems to have been in the driver since the beginning, but it only manifests recently, I do not know why. Store the IRQ number in the state struct, as this is a common pattern in other drivers, then use this to determine if we have IRQ support or not. | ||||
| CVE-2025-68329 | 1 Linux | 1 Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Fix WARN_ON in tracing_buffers_mmap_close for split VMAs When a VMA is split (e.g., by partial munmap or MAP_FIXED), the kernel calls vm_ops->close on each portion. For trace buffer mappings, this results in ring_buffer_unmap() being called multiple times while ring_buffer_map() was only called once. This causes ring_buffer_unmap() to return -ENODEV on subsequent calls because user_mapped is already 0, triggering a WARN_ON. Trace buffer mappings cannot support partial mappings because the ring buffer structure requires the complete buffer including the meta page. Fix this by adding a may_split callback that returns -EINVAL to prevent VMA splits entirely. | ||||
| CVE-2025-68328 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: firmware: stratix10-svc: fix bug in saving controller data Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They both are of the same data and overrides each other. This resulted in the rmmod of the svc driver to fail and throw a kernel panic for kthread_stop and fifo free. | ||||
| CVE-2025-68327 | 1 Linux | 1 Linux Kernel | 2025-12-22 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: usb: renesas_usbhs: Fix synchronous external abort on unbind A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is executed after the configuration sequence described above: modprobe usb_f_ecm modprobe libcomposite modprobe configfs cd /sys/kernel/config/usb_gadget mkdir -p g1 cd g1 echo "0x1d6b" > idVendor echo "0x0104" > idProduct mkdir -p strings/0x409 echo "0123456789" > strings/0x409/serialnumber echo "Renesas." > strings/0x409/manufacturer echo "Ethernet Gadget" > strings/0x409/product mkdir -p functions/ecm.usb0 mkdir -p configs/c.1 mkdir -p configs/c.1/strings/0x409 echo "ECM" > configs/c.1/strings/0x409/configuration if [ ! -L configs/c.1/ecm.usb0 ]; then ln -s functions/ecm.usb0 configs/c.1 fi echo 11e20000.usb > UDC echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind The displayed trace is as follows: Internal error: synchronous external abort: 0000000096000010 [#1] SMP CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT Tainted: [M]=MACHINE_CHECK Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs] sp : ffff8000838b3920 x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810 x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000 x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020 x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344 x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000 x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80 Call trace: usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P) usbhsg_pullup+0x4c/0x7c [renesas_usbhs] usb_gadget_disconnect_locked+0x48/0xd4 gadget_unbind_driver+0x44/0x114 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_release_driver+0x18/0x24 bus_remove_device+0xcc/0x10c device_del+0x14c/0x404 usb_del_gadget+0x88/0xc0 usb_del_gadget_udc+0x18/0x30 usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs] usbhs_mod_remove+0x20/0x30 [renesas_usbhs] usbhs_remove+0x98/0xdc [renesas_usbhs] platform_remove+0x20/0x30 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_driver_detach+0x18/0x24 unbind_store+0xb4/0xb8 drv_attr_store+0x24/0x38 sysfs_kf_write+0x7c/0x94 kernfs_fop_write_iter+0x128/0x1b8 vfs_write+0x2ac/0x350 ksys_write+0x68/0xfc __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xf0 el0t_64_sync_handler+0xa0/0xe4 el0t_64_sync+0x198/0x19c Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021) ---[ end trace 0000000000000000 ]--- note: sh[188] exited with irqs disabled note: sh[188] exited with preempt_count 1 The issue occurs because usbhs_sys_function_pullup(), which accesses the IP registers, is executed after the USBHS clocks have been disabled. The problem is reproducible on the Renesas RZ/G3S SoC starting with the addition of module stop in the clock enable/disable APIs. With module stop functionality enabled, a bus error is expected if a master accesses a module whose clock has been stopped and module stop activated. Disable the IP clocks at the end of remove. | ||||
| CVE-2025-68326 | 1 Linux | 1 Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Fix stack_depot usage Add missing stack_depot_init() call when CONFIG_DRM_XE_DEBUG_GUC is enabled to fix the following call stack: [] BUG: kernel NULL pointer dereference, address: 0000000000000000 [] Workqueue: drm_sched_run_job_work [gpu_sched] [] RIP: 0010:stack_depot_save_flags+0x172/0x870 [] Call Trace: [] <TASK> [] fast_req_track+0x58/0xb0 [xe] (cherry picked from commit 64fdf496a6929a0a194387d2bb5efaf5da2b542f) | ||||
| CVE-2022-48853 | 1 Linux | 1 Linux Kernel | 2025-12-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: swiotlb: fix info leak with DMA_FROM_DEVICE The problem I'm addressing was discovered by the LTP test covering cve-2018-1000204. A short description of what happens follows: 1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV and a corresponding dxferp. The peculiar thing about this is that TUR is not reading from the device. 2) In sg_start_req() the invocation of blk_rq_map_user() effectively bounces the user-space buffer. As if the device was to transfer into it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in sg_build_indirect()") we make sure this first bounce buffer is allocated with GFP_ZERO. 3) For the rest of the story we keep ignoring that we have a TUR, so the device won't touch the buffer we prepare as if the we had a DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device and the buffer allocated by SG is mapped by the function virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here scatter-gather and not scsi generics). This mapping involves bouncing via the swiotlb (we need swiotlb to do virtio in protected guest like s390 Secure Execution, or AMD SEV). 4) When the SCSI TUR is done, we first copy back the content of the second (that is swiotlb) bounce buffer (which most likely contains some previous IO data), to the first bounce buffer, which contains all zeros. Then we copy back the content of the first bounce buffer to the user-space buffer. 5) The test case detects that the buffer, which it zero-initialized, ain't all zeros and fails. One can argue that this is an swiotlb problem, because without swiotlb we leak all zeros, and the swiotlb should be transparent in a sense that it does not affect the outcome (if all other participants are well behaved). Copying the content of the original buffer into the swiotlb buffer is the only way I can think of to make swiotlb transparent in such scenarios. So let's do just that if in doubt, but allow the driver to tell us that the whole mapped buffer is going to be overwritten, in which case we can preserve the old behavior and avoid the performance impact of the extra bounce. | ||||
| CVE-2025-68315 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to detect potential corrupted nid in free_nid_list As reported, on-disk footer.ino and footer.nid is the same and out-of-range, let's add sanity check on f2fs_alloc_nid() to detect any potential corruption in free_nid_list. | ||||
| CVE-2025-68286 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check NULL before accessing [WHAT] IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic fails with NULL pointer dereference. This can be reproduced with both an eDP panel and a DP monitors connected. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted 6.16.0-99-custom #8 PREEMPT(voluntary) Hardware name: AMD ........ RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu] Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49 89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30 c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02 RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668 RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000 RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760 R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000 R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu] amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu] ? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu] amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu] drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400 drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30 drm_crtc_get_last_vbltimestamp+0x55/0x90 drm_crtc_next_vblank_start+0x45/0xa0 drm_atomic_helper_wait_for_fences+0x81/0x1f0 ... (cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c) | ||||
| CVE-2025-68263 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: ipc: fix use-after-free in ipc_msg_send_request ipc_msg_send_request() waits for a generic netlink reply using an ipc_msg_table_entry on the stack. The generic netlink handler (handle_generic_event()/handle_response()) fills entry->response under ipc_msg_table_lock, but ipc_msg_send_request() used to validate and free entry->response without holding the same lock. Under high concurrency this allows a race where handle_response() is copying data into entry->response while ipc_msg_send_request() has just freed it, leading to a slab-use-after-free reported by KASAN in handle_generic_event(): BUG: KASAN: slab-use-after-free in handle_generic_event+0x3c4/0x5f0 [ksmbd] Write of size 12 at addr ffff888198ee6e20 by task pool/109349 ... Freed by task: kvfree ipc_msg_send_request [ksmbd] ksmbd_rpc_open -> ksmbd_session_rpc_open [ksmbd] Fix by: - Taking ipc_msg_table_lock in ipc_msg_send_request() while validating entry->response, freeing it when invalid, and removing the entry from ipc_msg_table. - Returning the final entry->response pointer to the caller only after the hash entry is removed under the lock. - Returning NULL in the error path, preserving the original API semantics. This makes all accesses to entry->response consistent with handle_response(), which already updates and fills the response buffer under ipc_msg_table_lock, and closes the race that allowed the UAF. | ||||
| CVE-2025-68246 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: close accepted socket when per-IP limit rejects connection When the per-IP connection limit is exceeded in ksmbd_kthread_fn(), the code sets ret = -EAGAIN and continues the accept loop without closing the just-accepted socket. That leaks one socket per rejected attempt from a single IP and enables a trivial remote DoS. Release client_sk before continuing. This bug was found with ZeroPath. | ||||
| CVE-2025-68196 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Cache streams targeting link when performing LT automation [WHY] Last LT automation update can cause crash by referencing current_state and calling into dc_update_planes_and_stream which may clobber current_state. [HOW] Cache relevant stream pointers and iterate through them instead of relying on the current_state. | ||||
| CVE-2025-40354 | 1 Linux | 1 Linux Kernel | 2025-12-20 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: increase max link count and fix link->enc NULL pointer access [why] 1.) dc->links[MAX_LINKS] array size smaller than actual requested. max_connector + max_dpia + 4 virtual = 14. increase from 12 to 14. 2.) hw_init() access null LINK_ENC for dpia non display_endpoint. (cherry picked from commit d7f5a61e1b04ed87b008c8d327649d184dc5bb45) | ||||
| CVE-2025-40343 | 1 Linux | 1 Linux Kernel | 2025-12-20 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: nvmet-fc: avoid scheduling association deletion twice When forcefully shutting down a port via the configfs interface, nvmet_port_subsys_drop_link() first calls nvmet_port_del_ctrls() and then nvmet_disable_port(). Both functions will eventually schedule all remaining associations for deletion. The current implementation checks whether an association is about to be removed, but only after the work item has already been scheduled. As a result, it is possible for the first scheduled work item to free all resources, and then for the same work item to be scheduled again for deletion. Because the association list is an RCU list, it is not possible to take a lock and remove the list entry directly, so it cannot be looked up again. Instead, a flag (terminating) must be used to determine whether the association is already in the process of being deleted. | ||||
| CVE-2025-40342 | 1 Linux | 1 Linux Kernel | 2025-12-20 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: nvme-fc: use lock accessing port_state and rport state nvme_fc_unregister_remote removes the remote port on a lport object at any point in time when there is no active association. This races with with the reconnect logic, because nvme_fc_create_association is not taking a lock to check the port_state and atomically increase the active count on the rport. | ||||