Filtered by vendor Redhat
Subscriptions
Filtered by product Rhmt
Subscriptions
Total
141 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-29406 | 2 Golang, Redhat | 19 Go, Advanced Cluster Security, Cryostat and 16 more | 2025-02-13 | 6.5 Medium |
The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests. With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value. | ||||
CVE-2023-24538 | 2 Golang, Redhat | 21 Go, Advanced Cluster Security, Ansible Automation Platform and 18 more | 2025-02-13 | 9.8 Critical |
Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution. | ||||
CVE-2023-24537 | 2 Golang, Redhat | 21 Go, Advanced Cluster Security, Ansible Automation Platform and 18 more | 2025-02-13 | 7.5 High |
Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow. | ||||
CVE-2023-24536 | 2 Golang, Redhat | 19 Go, Advanced Cluster Security, Ansible Automation Platform and 16 more | 2025-02-13 | 7.5 High |
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=. | ||||
CVE-2023-24534 | 2 Golang, Redhat | 22 Go, Advanced Cluster Security, Ansible Automation Platform and 19 more | 2025-02-13 | 7.5 High |
HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service. Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service. With fix, header parsing now correctly allocates only the memory required to hold parsed headers. | ||||
CVE-2022-41717 | 3 Fedoraproject, Golang, Redhat | 25 Fedora, Go, Http2 and 22 more | 2025-02-13 | 5.3 Medium |
An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests. HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection. | ||||
CVE-2022-41715 | 2 Golang, Redhat | 24 Go, Acm, Ceph Storage and 21 more | 2025-02-13 | 7.5 High |
Programs which compile regular expressions from untrusted sources may be vulnerable to memory exhaustion or denial of service. The parsed regexp representation is linear in the size of the input, but in some cases the constant factor can be as high as 40,000, making relatively small regexps consume much larger amounts of memory. After fix, each regexp being parsed is limited to a 256 MB memory footprint. Regular expressions whose representation would use more space than that are rejected. Normal use of regular expressions is unaffected. | ||||
CVE-2022-2880 | 2 Golang, Redhat | 20 Go, Acm, Ceph Storage and 17 more | 2025-02-13 | 7.5 High |
Requests forwarded by ReverseProxy include the raw query parameters from the inbound request, including unparsable parameters rejected by net/http. This could permit query parameter smuggling when a Go proxy forwards a parameter with an unparsable value. After fix, ReverseProxy sanitizes the query parameters in the forwarded query when the outbound request's Form field is set after the ReverseProxy. Director function returns, indicating that the proxy has parsed the query parameters. Proxies which do not parse query parameters continue to forward the original query parameters unchanged. | ||||
CVE-2022-2879 | 2 Golang, Redhat | 16 Go, Container Native Virtualization, Devtools and 13 more | 2025-02-13 | 7.5 High |
Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB. | ||||
CVE-2023-26125 | 2 Gin-gonic, Redhat | 5 Gin, Migration Toolkit Applications, Migration Toolkit Virtualization and 2 more | 2025-01-29 | 5.6 Medium |
Versions of the package github.com/gin-gonic/gin before 1.9.0 are vulnerable to Improper Input Validation by allowing an attacker to use a specially crafted request via the X-Forwarded-Prefix header, potentially leading to cache poisoning. **Note:** Although this issue does not pose a significant threat on its own it can serve as an input vector for other more impactful vulnerabilities. However, successful exploitation may depend on the server configuration and whether the header is used in the application logic. | ||||
CVE-2024-45296 | 2 Pillarjs, Redhat | 19 Path-to-regexp, Acm, Ansible Automation Platform and 16 more | 2025-01-24 | 7.5 High |
path-to-regexp turns path strings into a regular expressions. In certain cases, path-to-regexp will output a regular expression that can be exploited to cause poor performance. Because JavaScript is single threaded and regex matching runs on the main thread, poor performance will block the event loop and lead to a DoS. The bad regular expression is generated any time you have two parameters within a single segment, separated by something that is not a period (.). For users of 0.1, upgrade to 0.1.10. All other users should upgrade to 8.0.0. | ||||
CVE-2023-29400 | 2 Golang, Redhat | 22 Go, Acm, Advanced Cluster Security and 19 more | 2025-01-24 | 7.3 High |
Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}") executed with empty input can result in output with unexpected results when parsed due to HTML normalization rules. This may allow injection of arbitrary attributes into tags. | ||||
CVE-2023-24540 | 2 Golang, Redhat | 20 Go, Acm, Advanced Cluster Security and 17 more | 2025-01-24 | 9.8 Critical |
Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution. | ||||
CVE-2023-24539 | 2 Golang, Redhat | 22 Go, Acm, Advanced Cluster Security and 19 more | 2025-01-24 | 7.3 High |
Angle brackets (<>) are not considered dangerous characters when inserted into CSS contexts. Templates containing multiple actions separated by a '/' character can result in unexpectedly closing the CSS context and allowing for injection of unexpected HTML, if executed with untrusted input. | ||||
CVE-2024-43788 | 3 Redhat, Webpack, Webpack.js | 10 Cryostat, Discovery, Jboss Data Grid and 7 more | 2025-01-09 | 6.4 Medium |
Webpack is a module bundler. Its main purpose is to bundle JavaScript files for usage in a browser, yet it is also capable of transforming, bundling, or packaging just about any resource or asset. The webpack developers have discovered a DOM Clobbering vulnerability in Webpack’s `AutoPublicPathRuntimeModule`. The DOM Clobbering gadget in the module can lead to cross-site scripting (XSS) in web pages where scriptless attacker-controlled HTML elements (e.g., an `img` tag with an unsanitized `name` attribute) are present. Real-world exploitation of this gadget has been observed in the Canvas LMS which allows a XSS attack to happen through a javascript code compiled by Webpack (the vulnerable part is from Webpack). DOM Clobbering is a type of code-reuse attack where the attacker first embeds a piece of non-script, seemingly benign HTML markups in the webpage (e.g. through a post or comment) and leverages the gadgets (pieces of js code) living in the existing javascript code to transform it into executable code. This vulnerability can lead to cross-site scripting (XSS) on websites that include Webpack-generated files and allow users to inject certain scriptless HTML tags with improperly sanitized name or id attributes. This issue has been addressed in release version 5.94.0. All users are advised to upgrade. There are no known workarounds for this issue. | ||||
CVE-2023-29401 | 2 Gin-gonic, Redhat | 4 Gin, Migration Toolkit Virtualization, Openshift and 1 more | 2025-01-06 | 4.3 Medium |
The filename parameter of the Context.FileAttachment function is not properly sanitized. A maliciously crafted filename can cause the Content-Disposition header to be sent with an unexpected filename value or otherwise modify the Content-Disposition header. For example, a filename of "setup.bat";x=.txt" will be sent as a file named "setup.bat". If the FileAttachment function is called with names provided by an untrusted source, this may permit an attacker to cause a file to be served with a name different than provided. Maliciously crafted attachment file name can modify the Content-Disposition header. | ||||
CVE-2022-25883 | 2 Npmjs, Redhat | 10 Semver, Acm, Enterprise Linux and 7 more | 2024-12-06 | 5.3 Medium |
Versions of the package semver before 7.5.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range. | ||||
CVE-2024-4068 | 2 Micromatch, Redhat | 7 Braces, Acm, Jboss Enterprise Application Platform and 4 more | 2024-11-21 | 7.5 High |
The NPM package `braces`, versions prior to 3.0.3, fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In `lib/parse.js,` if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash. | ||||
CVE-2024-34158 | 2 Go Build Constraint, Redhat | 11 Go Standard Library, Cryostat, Enterprise Linux and 8 more | 2024-11-21 | 7.5 High |
Calling Parse on a "// +build" build tag line with deeply nested expressions can cause a panic due to stack exhaustion. | ||||
CVE-2024-34156 | 2 Go Standard Library, Redhat | 19 Encoding\/gob, Advanced Cluster Security, Ceph Storage and 16 more | 2024-11-21 | 7.5 High |
Calling Decoder.Decode on a message which contains deeply nested structures can cause a panic due to stack exhaustion. This is a follow-up to CVE-2022-30635. |