Filtered by CWE-20
Total 12467 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-38662 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Allow delete from sockmap/sockhash only if update is allowed We have seen an influx of syzkaller reports where a BPF program attached to a tracepoint triggers a locking rule violation by performing a map_delete on a sockmap/sockhash. We don't intend to support this artificial use scenario. Extend the existing verifier allowed-program-type check for updating sockmap/sockhash to also cover deleting from a map. From now on only BPF programs which were previously allowed to update sockmap/sockhash can delete from these map types.
CVE-2024-36244 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: extend minimum interval restriction to entire cycle too It is possible for syzbot to side-step the restriction imposed by the blamed commit in the Fixes: tag, because the taprio UAPI permits a cycle-time different from (and potentially shorter than) the sum of entry intervals. We need one more restriction, which is that the cycle time itself must be larger than N * ETH_ZLEN bit times, where N is the number of schedule entries. This restriction needs to apply regardless of whether the cycle time came from the user or was the implicit, auto-calculated value, so we move the existing "cycle == 0" check outside the "if "(!new->cycle_time)" branch. This way covers both conditions and scenarios. Add a selftest which illustrates the issue triggered by syzbot.
CVE-2024-26727 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not ASSERT() if the newly created subvolume already got read [BUG] There is a syzbot crash, triggered by the ASSERT() during subvolume creation: assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319 ------------[ cut here ]------------ kernel BUG at fs/btrfs/disk-io.c:1319! invalid opcode: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60 <TASK> btrfs_get_new_fs_root+0xd3/0xf0 create_subvol+0xd02/0x1650 btrfs_mksubvol+0xe95/0x12b0 __btrfs_ioctl_snap_create+0x2f9/0x4f0 btrfs_ioctl_snap_create+0x16b/0x200 btrfs_ioctl+0x35f0/0x5cf0 __x64_sys_ioctl+0x19d/0x210 do_syscall_64+0x3f/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b ---[ end trace 0000000000000000 ]--- [CAUSE] During create_subvol(), after inserting root item for the newly created subvolume, we would trigger btrfs_get_new_fs_root() to get the btrfs_root of that subvolume. The idea here is, we have preallocated an anonymous device number for the subvolume, thus we can assign it to the new subvolume. But there is really nothing preventing things like backref walk to read the new subvolume. If that happens before we call btrfs_get_new_fs_root(), the subvolume would be read out, with a new anonymous device number assigned already. In that case, we would trigger ASSERT(), as we really expect no one to read out that subvolume (which is not yet accessible from the fs). But things like backref walk is still possible to trigger the read on the subvolume. Thus our assumption on the ASSERT() is not correct in the first place. [FIX] Fix it by removing the ASSERT(), and just free the @anon_dev, reset it to 0, and continue. If the subvolume tree is read out by something else, it should have already get a new anon_dev assigned thus we only need to free the preallocated one.
CVE-2024-26633 4 Debian, Linux, Netapp and 1 more 37 Debian Linux, Linux Kernel, 9500 and 34 more 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: fix NEXTHDR_FRAGMENT handling in ip6_tnl_parse_tlv_enc_lim() syzbot pointed out [1] that NEXTHDR_FRAGMENT handling is broken. Reading frag_off can only be done if we pulled enough bytes to skb->head. Currently we might access garbage. [1] BUG: KMSAN: uninit-value in ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] __kmem_cache_alloc_node+0x5c9/0x970 mm/slub.c:3517 __do_kmalloc_node mm/slab_common.c:1006 [inline] __kmalloc_node_track_caller+0x118/0x3c0 mm/slab_common.c:1027 kmalloc_reserve+0x249/0x4a0 net/core/skbuff.c:582 pskb_expand_head+0x226/0x1a00 net/core/skbuff.c:2098 __pskb_pull_tail+0x13b/0x2310 net/core/skbuff.c:2655 pskb_may_pull_reason include/linux/skbuff.h:2673 [inline] pskb_may_pull include/linux/skbuff.h:2681 [inline] ip6_tnl_parse_tlv_enc_lim+0x901/0xbb0 net/ipv6/ip6_tunnel.c:408 ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline] ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592 neigh_output include/net/neighbour.h:542 [inline] ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137 ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243 dst_output include/net/dst.h:451 [inline] ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155 ip6_send_skb net/ipv6/ip6_output.c:1952 [inline] ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972 rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582 rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920 inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendms ---truncated---
CVE-2023-52781 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-05-04 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: config: fix iteration issue in 'usb_get_bos_descriptor()' The BOS descriptor defines a root descriptor and is the base descriptor for accessing a family of related descriptors. Function 'usb_get_bos_descriptor()' encounters an iteration issue when skipping the 'USB_DT_DEVICE_CAPABILITY' descriptor type. This results in the same descriptor being read repeatedly. To address this issue, a 'goto' statement is introduced to ensure that the pointer and the amount read is updated correctly. This ensures that the function iterates to the next descriptor instead of reading the same descriptor repeatedly.
CVE-2022-49624 2025-05-04 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: remove aq_nic_deinit() when resume aq_nic_deinit() has been called while suspending, so we don't have to call it again on resume. Actually, call it again leads to another hang issue when resuming from S3. Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992345] Call Trace: Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992346] <TASK> Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992348] aq_nic_deinit+0xb4/0xd0 [atlantic] Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992356] aq_pm_thaw+0x7f/0x100 [atlantic] Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992362] pci_pm_resume+0x5c/0x90 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992366] ? pci_pm_thaw+0x80/0x80 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992368] dpm_run_callback+0x4e/0x120 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992371] device_resume+0xad/0x200 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992373] async_resume+0x1e/0x40 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992374] async_run_entry_fn+0x33/0x120 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992377] process_one_work+0x220/0x3c0 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992380] worker_thread+0x4d/0x3f0 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992382] ? process_one_work+0x3c0/0x3c0 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992384] kthread+0x12a/0x150 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992386] ? set_kthread_struct+0x40/0x40 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992387] ret_from_fork+0x22/0x30 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992391] </TASK> Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992392] ---[ end trace 1ec8c79604ed5e0d ]--- Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992394] PM: dpm_run_callback(): pci_pm_resume+0x0/0x90 returns -110 Jul 8 03:09:44 u-Precision-7865-Tower kernel: [ 5910.992397] atlantic 0000:02:00.0: PM: failed to resume async: error -110
CVE-2022-49266 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix rq-qos breakage from skipping rq_qos_done_bio() a647a524a467 ("block: don't call rq_qos_ops->done_bio if the bio isn't tracked") made bio_endio() skip rq_qos_done_bio() if BIO_TRACKED is not set. While this fixed a potential oops, it also broke blk-iocost by skipping the done_bio callback for merged bios. Before, whether a bio goes through rq_qos_throttle() or rq_qos_merge(), rq_qos_done_bio() would be called on the bio on completion with BIO_TRACKED distinguishing the former from the latter. rq_qos_done_bio() is not called for bios which wenth through rq_qos_merge(). This royally confuses blk-iocost as the merged bios never finish and are considered perpetually in-flight. One reliably reproducible failure mode is an intermediate cgroup geting stuck active preventing its children from being activated due to the leaf-only rule, leading to loss of control. The following is from resctl-bench protection scenario which emulates isolating a web server like workload from a memory bomb run on an iocost configuration which should yield a reasonable level of protection. # cat /sys/block/nvme2n1/device/model Samsung SSD 970 PRO 512GB # cat /sys/fs/cgroup/io.cost.model 259:0 ctrl=user model=linear rbps=834913556 rseqiops=93622 rrandiops=102913 wbps=618985353 wseqiops=72325 wrandiops=71025 # cat /sys/fs/cgroup/io.cost.qos 259:0 enable=1 ctrl=user rpct=95.00 rlat=18776 wpct=95.00 wlat=8897 min=60.00 max=100.00 # resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1 ... Memory Hog Summary ================== IO Latency: R p50=242u:336u/2.5m p90=794u:1.4m/7.5m p99=2.7m:8.0m/62.5m max=8.0m:36.4m/350m W p50=221u:323u/1.5m p90=709u:1.2m/5.5m p99=1.5m:2.5m/9.5m max=6.9m:35.9m/350m Isolation and Request Latency Impact Distributions: min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev isol% 15.90 15.90 15.90 40.05 57.24 59.07 60.01 74.63 74.63 90.35 90.35 58.12 15.82 lat-imp% 0 0 0 0 0 4.55 14.68 15.54 233.5 548.1 548.1 53.88 143.6 Result: isol=58.12:15.82% lat_imp=53.88%:143.6 work_csv=100.0% missing=3.96% The isolation result of 58.12% is close to what this device would show without any IO control. Fix it by introducing a new flag BIO_QOS_MERGED to mark merged bios and calling rq_qos_done_bio() on them too. For consistency and clarity, rename BIO_TRACKED to BIO_QOS_THROTTLED. The flag checks are moved into rq_qos_done_bio() so that it's next to the code paths that set the flags. With the patch applied, the above same benchmark shows: # resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1 ... Memory Hog Summary ================== IO Latency: R p50=123u:84.4u/985u p90=322u:256u/2.5m p99=1.6m:1.4m/9.5m max=11.1m:36.0m/350m W p50=429u:274u/995u p90=1.7m:1.3m/4.5m p99=3.4m:2.7m/11.5m max=7.9m:5.9m/26.5m Isolation and Request Latency Impact Distributions: min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev isol% 84.91 84.91 89.51 90.73 92.31 94.49 96.36 98.04 98.71 100.0 100.0 94.42 2.81 lat-imp% 0 0 0 0 0 2.81 5.73 11.11 13.92 17.53 22.61 4.10 4.68 Result: isol=94.42:2.81% lat_imp=4.10%:4.68 work_csv=58.34% missing=0%
CVE-2022-48986 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/gup: fix gup_pud_range() for dax For dax pud, pud_huge() returns true on x86. So the function works as long as hugetlb is configured. However, dax doesn't depend on hugetlb. Commit 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax") fixed devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as well. This fixes the below kernel panic: general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP < snip > Call Trace: <TASK> get_user_pages_fast+0x1f/0x40 iov_iter_get_pages+0xc6/0x3b0 ? mempool_alloc+0x5d/0x170 bio_iov_iter_get_pages+0x82/0x4e0 ? bvec_alloc+0x91/0xc0 ? bio_alloc_bioset+0x19a/0x2a0 blkdev_direct_IO+0x282/0x480 ? __io_complete_rw_common+0xc0/0xc0 ? filemap_range_has_page+0x82/0xc0 generic_file_direct_write+0x9d/0x1a0 ? inode_update_time+0x24/0x30 __generic_file_write_iter+0xbd/0x1e0 blkdev_write_iter+0xb4/0x150 ? io_import_iovec+0x8d/0x340 io_write+0xf9/0x300 io_issue_sqe+0x3c3/0x1d30 ? sysvec_reschedule_ipi+0x6c/0x80 __io_queue_sqe+0x33/0x240 ? fget+0x76/0xa0 io_submit_sqes+0xe6a/0x18d0 ? __fget_light+0xd1/0x100 __x64_sys_io_uring_enter+0x199/0x880 ? __context_tracking_enter+0x1f/0x70 ? irqentry_exit_to_user_mode+0x24/0x30 ? irqentry_exit+0x1d/0x30 ? __context_tracking_exit+0xe/0x70 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x61/0xcb RIP: 0033:0x7fc97c11a7be < snip > </TASK> ---[ end trace 48b2e0e67debcaeb ]--- RIP: 0010:internal_get_user_pages_fast+0x340/0x990 < snip > Kernel panic - not syncing: Fatal exception Kernel Offset: disabled
CVE-2021-47136 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: zero-initialize tc skb extension on allocation Function skb_ext_add() doesn't initialize created skb extension with any value and leaves it up to the user. However, since extension of type TC_SKB_EXT originally contained only single value tc_skb_ext->chain its users used to just assign the chain value without setting whole extension memory to zero first. This assumption changed when TC_SKB_EXT extension was extended with additional fields but not all users were updated to initialize the new fields which leads to use of uninitialized memory afterwards. UBSAN log: [ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28 [ 778.301495] load of value 107 is not a valid value for type '_Bool' [ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2 [ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 778.307901] Call Trace: [ 778.308680] <IRQ> [ 778.309358] dump_stack+0xbb/0x107 [ 778.310307] ubsan_epilogue+0x5/0x40 [ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48 [ 778.312454] ? memset+0x20/0x40 [ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch] [ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch] [ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch] [ 778.317188] ? create_prof_cpu_mask+0x20/0x20 [ 778.318220] ? arch_stack_walk+0x82/0xf0 [ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb [ 778.320399] ? stack_trace_save+0x91/0xc0 [ 778.321362] ? stack_trace_consume_entry+0x160/0x160 [ 778.322517] ? lock_release+0x52e/0x760 [ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch] [ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch] [ 778.325950] __netif_receive_skb_core+0x771/0x2db0 [ 778.327067] ? lock_downgrade+0x6e0/0x6f0 [ 778.328021] ? lock_acquire+0x565/0x720 [ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0 [ 778.329902] ? inet_gro_receive+0x2a7/0x10a0 [ 778.330914] ? lock_downgrade+0x6f0/0x6f0 [ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0 [ 778.332876] ? lock_release+0x52e/0x760 [ 778.333808] ? dev_gro_receive+0xcc8/0x2380 [ 778.334810] ? lock_downgrade+0x6f0/0x6f0 [ 778.335769] __netif_receive_skb_list_core+0x295/0x820 [ 778.336955] ? process_backlog+0x780/0x780 [ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core] [ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0 [ 778.341033] ? kvm_clock_get_cycles+0x14/0x20 [ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0 [ 778.343288] ? __kasan_kmalloc+0x7a/0x90 [ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core] [ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core] [ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820 [ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core] [ 778.349688] ? napi_gro_flush+0x26c/0x3c0 [ 778.350641] napi_complete_done+0x188/0x6b0 [ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core] [ 778.352853] __napi_poll+0x9f/0x510 [ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core] [ 778.355158] net_rx_action+0x34c/0xa40 [ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0 [ 778.357083] ? sched_clock_cpu+0x18/0x190 [ 778.358041] ? __common_interrupt+0x8e/0x1a0 [ 778.359045] __do_softirq+0x1ce/0x984 [ 778.359938] __irq_exit_rcu+0x137/0x1d0 [ 778.360865] irq_exit_rcu+0xa/0x20 [ 778.361708] common_interrupt+0x80/0xa0 [ 778.362640] </IRQ> [ 778.363212] asm_common_interrupt+0x1e/0x40 [ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10 [ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00 [ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246 [ 778.370570] RAX ---truncated---
CVE-2021-47124 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix link timeout refs WARNING: CPU: 0 PID: 10242 at lib/refcount.c:28 refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28 RIP: 0010:refcount_warn_saturate+0x15b/0x1a0 lib/refcount.c:28 Call Trace: __refcount_sub_and_test include/linux/refcount.h:283 [inline] __refcount_dec_and_test include/linux/refcount.h:315 [inline] refcount_dec_and_test include/linux/refcount.h:333 [inline] io_put_req fs/io_uring.c:2140 [inline] io_queue_linked_timeout fs/io_uring.c:6300 [inline] __io_queue_sqe+0xbef/0xec0 fs/io_uring.c:6354 io_submit_sqe fs/io_uring.c:6534 [inline] io_submit_sqes+0x2bbd/0x7c50 fs/io_uring.c:6660 __do_sys_io_uring_enter fs/io_uring.c:9240 [inline] __se_sys_io_uring_enter+0x256/0x1d60 fs/io_uring.c:9182 io_link_timeout_fn() should put only one reference of the linked timeout request, however in case of racing with the master request's completion first io_req_complete() puts one and then io_put_req_deferred() is called.
CVE-2021-47001 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: xprtrdma: Fix cwnd update ordering After a reconnect, the reply handler is opening the cwnd (and thus enabling more RPC Calls to be sent) /before/ rpcrdma_post_recvs() can post enough Receive WRs to receive their replies. This causes an RNR and the new connection is lost immediately. The race is most clearly exposed when KASAN and disconnect injection are enabled. This slows down rpcrdma_rep_create() enough to allow the send side to post a bunch of RPC Calls before the Receive completion handler can invoke ib_post_recv().
CVE-2021-46990 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix crashes when toggling entry flush barrier The entry flush mitigation can be enabled/disabled at runtime via a debugfs file (entry_flush), which causes the kernel to patch itself to enable/disable the relevant mitigations. However depending on which mitigation we're using, it may not be safe to do that patching while other CPUs are active. For example the following crash: sleeper[15639]: segfault (11) at c000000000004c20 nip c000000000004c20 lr c000000000004c20 Shows that we returned to userspace with a corrupted LR that points into the kernel, due to executing the partially patched call to the fallback entry flush (ie. we missed the LR restore). Fix it by doing the patching under stop machine. The CPUs that aren't doing the patching will be spinning in the core of the stop machine logic. That is currently sufficient for our purposes, because none of the patching we do is to that code or anywhere in the vicinity.
CVE-2021-46974 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix masking negation logic upon negative dst register The negation logic for the case where the off_reg is sitting in the dst register is not correct given then we cannot just invert the add to a sub or vice versa. As a fix, perform the final bitwise and-op unconditionally into AX from the off_reg, then move the pointer from the src to dst and finally use AX as the source for the original pointer arithmetic operation such that the inversion yields a correct result. The single non-AX mov in between is possible given constant blinding is retaining it as it's not an immediate based operation.
CVE-2021-4454 2025-05-04 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: can: j1939: fix errant WARN_ON_ONCE in j1939_session_deactivate The conclusion "j1939_session_deactivate() should be called with a session ref-count of at least 2" is incorrect. In some concurrent scenarios, j1939_session_deactivate can be called with the session ref-count less than 2. But there is not any problem because it will check the session active state before session putting in j1939_session_deactivate_locked(). Here is the concurrent scenario of the problem reported by syzbot and my reproduction log. cpu0 cpu1 j1939_xtp_rx_eoma j1939_xtp_rx_abort_one j1939_session_get_by_addr [kref == 2] j1939_session_get_by_addr [kref == 3] j1939_session_deactivate [kref == 2] j1939_session_put [kref == 1] j1939_session_completed j1939_session_deactivate WARN_ON_ONCE(kref < 2) ===================================================== WARNING: CPU: 1 PID: 21 at net/can/j1939/transport.c:1088 j1939_session_deactivate+0x5f/0x70 CPU: 1 PID: 21 Comm: ksoftirqd/1 Not tainted 5.14.0-rc7+ #32 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 RIP: 0010:j1939_session_deactivate+0x5f/0x70 Call Trace: j1939_session_deactivate_activate_next+0x11/0x28 j1939_xtp_rx_eoma+0x12a/0x180 j1939_tp_recv+0x4a2/0x510 j1939_can_recv+0x226/0x380 can_rcv_filter+0xf8/0x220 can_receive+0x102/0x220 ? process_backlog+0xf0/0x2c0 can_rcv+0x53/0xf0 __netif_receive_skb_one_core+0x67/0x90 ? process_backlog+0x97/0x2c0 __netif_receive_skb+0x22/0x80
CVE-2024-58086 2025-05-04 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Stop active perfmon if it is being destroyed If the active performance monitor (`v3d->active_perfmon`) is being destroyed, stop it first. Currently, the active perfmon is not stopped during destruction, leaving the `v3d->active_perfmon` pointer stale. This can lead to undefined behavior and instability. This patch ensures that the active perfmon is stopped before being destroyed, aligning with the behavior introduced in commit 7d1fd3638ee3 ("drm/v3d: Stop the active perfmon before being destroyed").
CVE-2024-58084 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: scm: Fix missing read barrier in qcom_scm_get_tzmem_pool() Commit 2e4955167ec5 ("firmware: qcom: scm: Fix __scm and waitq completion variable initialization") introduced a write barrier in probe function to store global '__scm' variable. We all known barriers are paired (see memory-barriers.txt: "Note that write barriers should normally be paired with read or address-dependency barriers"), therefore accessing it from concurrent contexts requires read barrier. Previous commit added such barrier in qcom_scm_is_available(), so let's use that directly. Lack of this read barrier can result in fetching stale '__scm' variable value, NULL, and dereferencing it. Note that barrier in qcom_scm_is_available() satisfies here the control dependency.
CVE-2024-58061 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: prohibit deactivating all links In the internal API this calls this is a WARN_ON, but that should remain since internally we want to know about bugs that may cause this. Prevent deactivating all links in the debugfs write directly.
CVE-2024-57993 2025-05-04 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: HID: hid-thrustmaster: Fix warning in thrustmaster_probe by adding endpoint check syzbot has found a type mismatch between a USB pipe and the transfer endpoint, which is triggered by the hid-thrustmaster driver[1]. There is a number of similar, already fixed issues [2]. In this case as in others, implementing check for endpoint type fixes the issue. [1] https://syzkaller.appspot.com/bug?extid=040e8b3db6a96908d470 [2] https://syzkaller.appspot.com/bug?extid=348331f63b034f89b622
CVE-2024-57986 2025-05-04 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: core: Fix assumption that Resolution Multipliers must be in Logical Collections A report in 2019 by the syzbot fuzzer was found to be connected to two errors in the HID core associated with Resolution Multipliers. One of the errors was fixed by commit ea427a222d8b ("HID: core: Fix deadloop in hid_apply_multiplier."), but the other has not been fixed. This error arises because hid_apply_multipler() assumes that every Resolution Multiplier control is contained in a Logical Collection, i.e., there's no way the routine can ever set multiplier_collection to NULL. This is in spite of the fact that the function starts with a big comment saying: * "The Resolution Multiplier control must be contained in the same * Logical Collection as the control(s) to which it is to be applied. ... * If no Logical Collection is * defined, the Resolution Multiplier is associated with all * controls in the report." * HID Usage Table, v1.12, Section 4.3.1, p30 * * Thus, search from the current collection upwards until we find a * logical collection... The comment and the code overlook the possibility that none of the collections found may be a Logical Collection. The fix is to set the multiplier_collection pointer to NULL if the collection found isn't a Logical Collection.
CVE-2024-57941 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: netfs: Fix the (non-)cancellation of copy when cache is temporarily disabled When the caching for a cookie is temporarily disabled (e.g. due to a DIO write on that file), future copying to the cache for that file is disabled until all fds open on that file are closed. However, if netfslib is using the deprecated PG_private_2 method (such as is currently used by ceph), and decides it wants to copy to the cache, netfs_advance_write() will just bail at the first check seeing that the cache stream is unavailable, and indicate that it dealt with all the content. This means that we have no subrequests to provide notifications to drive the state machine or even to pin the request and the request just gets discarded, leaving the folios with PG_private_2 set. Fix this by jumping directly to cancel the request if the cache is not available. That way, we don't remove mark3 from the folio_queue list and netfs_pgpriv2_cancel() will clean up the folios. This was found by running the generic/013 xfstest against ceph with an active cache and the "-o fsc" option passed to ceph. That would usually hang