Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Eus
Subscriptions
Total
3004 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-39472 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: xfs: fix log recovery buffer allocation for the legacy h_size fixup Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer. Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation. | ||||
CVE-2024-38663 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from resetting io stat Since commit 3b8cc6298724 ("blk-cgroup: Optimize blkcg_rstat_flush()"), each iostat instance is added to blkcg percpu list, so blkcg_reset_stats() can't reset the stat instance by memset(), otherwise the llist may be corrupted. Fix the issue by only resetting the counter part. | ||||
CVE-2024-38615 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: cpufreq: exit() callback is optional The exit() callback is optional and shouldn't be called without checking a valid pointer first. Also, we must clear freq_table pointer even if the exit() callback isn't present. | ||||
CVE-2024-38608 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]--- | ||||
CVE-2024-38596 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data races in unix_release_sock/unix_stream_sendmsg A data-race condition has been identified in af_unix. In one data path, the write function unix_release_sock() atomically writes to sk->sk_shutdown using WRITE_ONCE. However, on the reader side, unix_stream_sendmsg() does not read it atomically. Consequently, this issue is causing the following KCSAN splat to occur: BUG: KCSAN: data-race in unix_release_sock / unix_stream_sendmsg write (marked) to 0xffff88867256ddbb of 1 bytes by task 7270 on cpu 28: unix_release_sock (net/unix/af_unix.c:640) unix_release (net/unix/af_unix.c:1050) sock_close (net/socket.c:659 net/socket.c:1421) __fput (fs/file_table.c:422) __fput_sync (fs/file_table.c:508) __se_sys_close (fs/open.c:1559 fs/open.c:1541) __x64_sys_close (fs/open.c:1541) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) read to 0xffff88867256ddbb of 1 bytes by task 989 on cpu 14: unix_stream_sendmsg (net/unix/af_unix.c:2273) __sock_sendmsg (net/socket.c:730 net/socket.c:745) ____sys_sendmsg (net/socket.c:2584) __sys_sendmmsg (net/socket.c:2638 net/socket.c:2724) __x64_sys_sendmmsg (net/socket.c:2753 net/socket.c:2750 net/socket.c:2750) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) value changed: 0x01 -> 0x03 The line numbers are related to commit dd5a440a31fa ("Linux 6.9-rc7"). Commit e1d09c2c2f57 ("af_unix: Fix data races around sk->sk_shutdown.") addressed a comparable issue in the past regarding sk->sk_shutdown. However, it overlooked resolving this particular data path. This patch only offending unix_stream_sendmsg() function, since the other reads seem to be protected by unix_state_lock() as discussed in | ||||
CVE-2024-38586 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: r8169: Fix possible ring buffer corruption on fragmented Tx packets. An issue was found on the RTL8125b when transmitting small fragmented packets, whereby invalid entries were inserted into the transmit ring buffer, subsequently leading to calls to dma_unmap_single() with a null address. This was caused by rtl8169_start_xmit() not noticing changes to nr_frags which may occur when small packets are padded (to work around hardware quirks) in rtl8169_tso_csum_v2(). To fix this, postpone inspecting nr_frags until after any padding has been applied. | ||||
CVE-2024-38573 | 2 Linux, Redhat | 4 Acrn, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 7.5 High |
In the Linux kernel, the following vulnerability has been resolved: cppc_cpufreq: Fix possible null pointer dereference cppc_cpufreq_get_rate() and hisi_cppc_cpufreq_get_rate() can be called from different places with various parameters. So cpufreq_cpu_get() can return null as 'policy' in some circumstances. Fix this bug by adding null return check. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
CVE-2024-38570 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace. This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead. | ||||
CVE-2024-38564 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: bpf: Add BPF_PROG_TYPE_CGROUP_SKB attach type enforcement in BPF_LINK_CREATE bpf_prog_attach uses attach_type_to_prog_type to enforce proper attach type for BPF_PROG_TYPE_CGROUP_SKB. link_create uses bpf_prog_get and relies on bpf_prog_attach_check_attach_type to properly verify prog_type <> attach_type association. Add missing attach_type enforcement for the link_create case. Otherwise, it's currently possible to attach cgroup_skb prog types to other cgroup hooks. | ||||
CVE-2024-38559 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: qedf: Ensure the copied buf is NUL terminated Currently, we allocate a count-sized kernel buffer and copy count from userspace to that buffer. Later, we use kstrtouint on this buffer but we don't ensure that the string is terminated inside the buffer, this can lead to OOB read when using kstrtouint. Fix this issue by using memdup_user_nul instead of memdup_user. | ||||
CVE-2024-38558 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: fix overwriting ct original tuple for ICMPv6 OVS_PACKET_CMD_EXECUTE has 3 main attributes: - OVS_PACKET_ATTR_KEY - Packet metadata in a netlink format. - OVS_PACKET_ATTR_PACKET - Binary packet content. - OVS_PACKET_ATTR_ACTIONS - Actions to execute on the packet. OVS_PACKET_ATTR_KEY is parsed first to populate sw_flow_key structure with the metadata like conntrack state, input port, recirculation id, etc. Then the packet itself gets parsed to populate the rest of the keys from the packet headers. Whenever the packet parsing code starts parsing the ICMPv6 header, it first zeroes out fields in the key corresponding to Neighbor Discovery information even if it is not an ND packet. It is an 'ipv6.nd' field. However, the 'ipv6' is a union that shares the space between 'nd' and 'ct_orig' that holds the original tuple conntrack metadata parsed from the OVS_PACKET_ATTR_KEY. ND packets should not normally have conntrack state, so it's fine to share the space, but normal ICMPv6 Echo packets or maybe other types of ICMPv6 can have the state attached and it should not be overwritten. The issue results in all but the last 4 bytes of the destination address being wiped from the original conntrack tuple leading to incorrect packet matching and potentially executing wrong actions in case this packet recirculates within the datapath or goes back to userspace. ND fields should not be accessed in non-ND packets, so not clearing them should be fine. Executing memset() only for actual ND packets to avoid the issue. Initializing the whole thing before parsing is needed because ND packet may not contain all the options. The issue only affects the OVS_PACKET_CMD_EXECUTE path and doesn't affect packets entering OVS datapath from network interfaces, because in this case CT metadata is populated from skb after the packet is already parsed. | ||||
CVE-2024-38538 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: net: bridge: xmit: make sure we have at least eth header len bytes syzbot triggered an uninit value[1] error in bridge device's xmit path by sending a short (less than ETH_HLEN bytes) skb. To fix it check if we can actually pull that amount instead of assuming. Tested with dropwatch: drop at: br_dev_xmit+0xb93/0x12d0 [bridge] (0xffffffffc06739b3) origin: software timestamp: Mon May 13 11:31:53 2024 778214037 nsec protocol: 0x88a8 length: 2 original length: 2 drop reason: PKT_TOO_SMALL [1] BUG: KMSAN: uninit-value in br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65 br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547 __dev_queue_xmit+0x34db/0x5350 net/core/dev.c:4341 dev_queue_xmit include/linux/netdevice.h:3091 [inline] __bpf_tx_skb net/core/filter.c:2136 [inline] __bpf_redirect_common net/core/filter.c:2180 [inline] __bpf_redirect+0x14a6/0x1620 net/core/filter.c:2187 ____bpf_clone_redirect net/core/filter.c:2460 [inline] bpf_clone_redirect+0x328/0x470 net/core/filter.c:2432 ___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997 __bpf_prog_run512+0xb5/0xe0 kernel/bpf/core.c:2238 bpf_dispatcher_nop_func include/linux/bpf.h:1234 [inline] __bpf_prog_run include/linux/filter.h:657 [inline] bpf_prog_run include/linux/filter.h:664 [inline] bpf_test_run+0x499/0xc30 net/bpf/test_run.c:425 bpf_prog_test_run_skb+0x14ea/0x1f20 net/bpf/test_run.c:1058 bpf_prog_test_run+0x6b7/0xad0 kernel/bpf/syscall.c:4269 __sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5678 __do_sys_bpf kernel/bpf/syscall.c:5767 [inline] __se_sys_bpf kernel/bpf/syscall.c:5765 [inline] __x64_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5765 x64_sys_call+0x96b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:322 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f | ||||
CVE-2024-38384 | 2 Linux, Redhat | 2 Linux Kernel, Rhel Eus | 2025-05-04 | 8.4 High |
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from reorder of WRITE ->lqueued __blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start is being executed. If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one stat instance being added in blk_cgroup_bio_start(), then the local list in __blkcg_rstat_flush() could be corrupted. Fix the issue by adding one barrier. | ||||
CVE-2024-37356 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 6.6 Medium |
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix shift-out-of-bounds in dctcp_update_alpha(). In dctcp_update_alpha(), we use a module parameter dctcp_shift_g as follows: alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g); ... delivered_ce <<= (10 - dctcp_shift_g); It seems syzkaller started fuzzing module parameters and triggered shift-out-of-bounds [0] by setting 100 to dctcp_shift_g: memcpy((void*)0x20000080, "/sys/module/tcp_dctcp/parameters/dctcp_shift_g\000", 47); res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000080ul, /*flags=*/2ul, /*mode=*/0ul); memcpy((void*)0x20000000, "100\000", 4); syscall(__NR_write, /*fd=*/r[0], /*val=*/0x20000000ul, /*len=*/4ul); Let's limit the max value of dctcp_shift_g by param_set_uint_minmax(). With this patch: # echo 10 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g # cat /sys/module/tcp_dctcp/parameters/dctcp_shift_g 10 # echo 11 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g -bash: echo: write error: Invalid argument [0]: UBSAN: shift-out-of-bounds in net/ipv4/tcp_dctcp.c:143:12 shift exponent 100 is too large for 32-bit type 'u32' (aka 'unsigned int') CPU: 0 PID: 8083 Comm: syz-executor345 Not tainted 6.9.0-05151-g1b294a1f3561 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x201/0x300 lib/dump_stack.c:114 ubsan_epilogue lib/ubsan.c:231 [inline] __ubsan_handle_shift_out_of_bounds+0x346/0x3a0 lib/ubsan.c:468 dctcp_update_alpha+0x540/0x570 net/ipv4/tcp_dctcp.c:143 tcp_in_ack_event net/ipv4/tcp_input.c:3802 [inline] tcp_ack+0x17b1/0x3bc0 net/ipv4/tcp_input.c:3948 tcp_rcv_state_process+0x57a/0x2290 net/ipv4/tcp_input.c:6711 tcp_v4_do_rcv+0x764/0xc40 net/ipv4/tcp_ipv4.c:1937 sk_backlog_rcv include/net/sock.h:1106 [inline] __release_sock+0x20f/0x350 net/core/sock.c:2983 release_sock+0x61/0x1f0 net/core/sock.c:3549 mptcp_subflow_shutdown+0x3d0/0x620 net/mptcp/protocol.c:2907 mptcp_check_send_data_fin+0x225/0x410 net/mptcp/protocol.c:2976 __mptcp_close+0x238/0xad0 net/mptcp/protocol.c:3072 mptcp_close+0x2a/0x1a0 net/mptcp/protocol.c:3127 inet_release+0x190/0x1f0 net/ipv4/af_inet.c:437 __sock_release net/socket.c:659 [inline] sock_close+0xc0/0x240 net/socket.c:1421 __fput+0x41b/0x890 fs/file_table.c:422 task_work_run+0x23b/0x300 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x9c8/0x2540 kernel/exit.c:878 do_group_exit+0x201/0x2b0 kernel/exit.c:1027 __do_sys_exit_group kernel/exit.c:1038 [inline] __se_sys_exit_group kernel/exit.c:1036 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1036 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xe4/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f6c2b5005b6 Code: Unable to access opcode bytes at 0x7f6c2b50058c. RSP: 002b:00007ffe883eb948 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 00007f6c2b5862f0 RCX: 00007f6c2b5005b6 RDX: 0000000000000001 RSI: 000000000000003c RDI: 0000000000000001 RBP: 0000000000000001 R08: 00000000000000e7 R09: ffffffffffffffc0 R10: 0000000000000006 R11: 0000000000000246 R12: 00007f6c2b5862f0 R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001 </TASK> | ||||
CVE-2024-36979 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: bridge: mst: fix vlan use-after-free syzbot reported a suspicious rcu usage[1] in bridge's mst code. While fixing it I noticed that nothing prevents a vlan to be freed while walking the list from the same path (br forward delay timer). Fix the rcu usage and also make sure we are not accessing freed memory by making br_mst_vlan_set_state use rcu read lock. [1] WARNING: suspicious RCU usage 6.9.0-rc6-syzkaller #0 Not tainted ----------------------------- net/bridge/br_private.h:1599 suspicious rcu_dereference_protected() usage! ... stack backtrace: CPU: 1 PID: 8017 Comm: syz-executor.1 Not tainted 6.9.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712 nbp_vlan_group net/bridge/br_private.h:1599 [inline] br_mst_set_state+0x1ea/0x650 net/bridge/br_mst.c:105 br_set_state+0x28a/0x7b0 net/bridge/br_stp.c:47 br_forward_delay_timer_expired+0x176/0x440 net/bridge/br_stp_timer.c:88 call_timer_fn+0x18e/0x650 kernel/time/timer.c:1793 expire_timers kernel/time/timer.c:1844 [inline] __run_timers kernel/time/timer.c:2418 [inline] __run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2429 run_timer_base kernel/time/timer.c:2438 [inline] run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2448 __do_softirq+0x2c6/0x980 kernel/softirq.c:554 invoke_softirq kernel/softirq.c:428 [inline] __irq_exit_rcu+0xf2/0x1c0 kernel/softirq.c:633 irq_exit_rcu+0x9/0x30 kernel/softirq.c:645 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 RIP: 0010:lock_acquire+0x264/0x550 kernel/locking/lockdep.c:5758 Code: 2b 00 74 08 4c 89 f7 e8 ba d1 84 00 f6 44 24 61 02 0f 85 85 01 00 00 41 f7 c7 00 02 00 00 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 25 00 00 00 00 00 43 c7 44 25 09 00 00 00 00 43 c7 44 25 RSP: 0018:ffffc90013657100 EFLAGS: 00000206 RAX: 0000000000000001 RBX: 1ffff920026cae2c RCX: 0000000000000001 RDX: dffffc0000000000 RSI: ffffffff8bcaca00 RDI: ffffffff8c1eaa60 RBP: ffffc90013657260 R08: ffffffff92efe507 R09: 1ffffffff25dfca0 R10: dffffc0000000000 R11: fffffbfff25dfca1 R12: 1ffff920026cae28 R13: dffffc0000000000 R14: ffffc90013657160 R15: 0000000000000246 | ||||
CVE-2024-36978 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: sched: sch_multiq: fix possible OOB write in multiq_tune() q->bands will be assigned to qopt->bands to execute subsequent code logic after kmalloc. So the old q->bands should not be used in kmalloc. Otherwise, an out-of-bounds write will occur. | ||||
CVE-2024-36971 | 2 Linux, Redhat | 8 Linux Kernel, Enterprise Linux, Openshift and 5 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: fix __dst_negative_advice() race __dst_negative_advice() does not enforce proper RCU rules when sk->dst_cache must be cleared, leading to possible UAF. RCU rules are that we must first clear sk->sk_dst_cache, then call dst_release(old_dst). Note that sk_dst_reset(sk) is implementing this protocol correctly, while __dst_negative_advice() uses the wrong order. Given that ip6_negative_advice() has special logic against RTF_CACHE, this means each of the three ->negative_advice() existing methods must perform the sk_dst_reset() themselves. Note the check against NULL dst is centralized in __dst_negative_advice(), there is no need to duplicate it in various callbacks. Many thanks to Clement Lecigne for tracking this issue. This old bug became visible after the blamed commit, using UDP sockets. | ||||
CVE-2024-36960 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix invalid reads in fence signaled events Correctly set the length of the drm_event to the size of the structure that's actually used. The length of the drm_event was set to the parent structure instead of to the drm_vmw_event_fence which is supposed to be read. drm_read uses the length parameter to copy the event to the user space thus resuling in oob reads. | ||||
CVE-2024-36952 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Move NPIV's transport unregistration to after resource clean up There are cases after NPIV deletion where the fabric switch still believes the NPIV is logged into the fabric. This occurs when a vport is unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the fabric. Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including the fabric D_ID, removes the last ndlp reference and frees the ndlp rport object. This sometimes causes the race condition where the final DA_ID and LOGO are skipped from being sent to the fabric switch. Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID and LOGO are sent. | ||||
CVE-2024-36940 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: pinctrl: core: delete incorrect free in pinctrl_enable() The "pctldev" struct is allocated in devm_pinctrl_register_and_init(). It's a devm_ managed pointer that is freed by devm_pinctrl_dev_release(), so freeing it in pinctrl_enable() will lead to a double free. The devm_pinctrl_dev_release() function frees the pindescs and destroys the mutex as well. |