Filtered by vendor Linux Subscriptions
Total 13302 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-39739 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu-qcom: Add SM6115 MDSS compatible Add the SM6115 MDSS compatible to clients compatible list, as it also needs that workaround. Without this workaround, for example, QRB4210 RB2 which is based on SM4250/SM6115 generates a lot of smmu unhandled context faults during boot: arm_smmu_context_fault: 116854 callbacks suppressed arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0ec600, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 arm-smmu c600000.iommu: FSYNR0 = 00320021 [S1CBNDX=50 PNU PLVL=1] arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0d7800, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 and also failed initialisation of lontium lt9611uxc, gpu and dpu is observed: (binding MDSS components triggered by lt9611uxc have failed) ------------[ cut here ]------------ !aspace WARNING: CPU: 6 PID: 324 at drivers/gpu/drm/msm/msm_gem_vma.c:130 msm_gem_vma_init+0x150/0x18c [msm] Modules linked in: ... (long list of modules) CPU: 6 UID: 0 PID: 324 Comm: (udev-worker) Not tainted 6.15.0-03037-gaacc73ceeb8b #4 PREEMPT Hardware name: Qualcomm Technologies, Inc. QRB4210 RB2 (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : msm_gem_vma_init+0x150/0x18c [msm] lr : msm_gem_vma_init+0x150/0x18c [msm] sp : ffff80008144b280 ... Call trace: msm_gem_vma_init+0x150/0x18c [msm] (P) get_vma_locked+0xc0/0x194 [msm] msm_gem_get_and_pin_iova_range+0x4c/0xdc [msm] msm_gem_kernel_new+0x48/0x160 [msm] msm_gpu_init+0x34c/0x53c [msm] adreno_gpu_init+0x1b0/0x2d8 [msm] a6xx_gpu_init+0x1e8/0x9e0 [msm] adreno_bind+0x2b8/0x348 [msm] component_bind_all+0x100/0x230 msm_drm_bind+0x13c/0x3d0 [msm] try_to_bring_up_aggregate_device+0x164/0x1d0 __component_add+0xa4/0x174 component_add+0x14/0x20 dsi_dev_attach+0x20/0x34 [msm] dsi_host_attach+0x58/0x98 [msm] devm_mipi_dsi_attach+0x34/0x90 lt9611uxc_attach_dsi.isra.0+0x94/0x124 [lontium_lt9611uxc] lt9611uxc_probe+0x540/0x5fc [lontium_lt9611uxc] i2c_device_probe+0x148/0x2a8 really_probe+0xbc/0x2c0 __driver_probe_device+0x78/0x120 driver_probe_device+0x3c/0x154 __driver_attach+0x90/0x1a0 bus_for_each_dev+0x68/0xb8 driver_attach+0x24/0x30 bus_add_driver+0xe4/0x208 driver_register+0x68/0x124 i2c_register_driver+0x48/0xcc lt9611uxc_driver_init+0x20/0x1000 [lontium_lt9611uxc] do_one_initcall+0x60/0x1d4 do_init_module+0x54/0x1fc load_module+0x1748/0x1c8c init_module_from_file+0x74/0xa0 __arm64_sys_finit_module+0x130/0x2f8 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x2c/0x80 el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- msm_dpu 5e01000.display-controller: [drm:msm_gpu_init [msm]] *ERROR* could not allocate memptrs: -22 msm_dpu 5e01000.display-controller: failed to load adreno gpu platform a400000.remoteproc:glink-edge:apr:service@7:dais: Adding to iommu group 19 msm_dpu 5e01000.display-controller: failed to bind 5900000.gpu (ops a3xx_ops [msm]): -22 msm_dpu 5e01000.display-controller: adev bind failed: -22 lt9611uxc 0-002b: failed to attach dsi to host lt9611uxc 0-002b: probe with driver lt9611uxc failed with error -22
CVE-2025-39775 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/mremap: fix WARN with uffd that has remap events disabled Registering userfaultd on a VMA that spans at least one PMD and then mremap()'ing that VMA can trigger a WARN when recovering from a failed page table move due to a page table allocation error. The code ends up doing the right thing (recurse, avoiding moving actual page tables), but triggering that WARN is unpleasant: WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_normal_pmd mm/mremap.c:357 [inline] WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_pgt_entry mm/mremap.c:595 [inline] WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_page_tables+0x3832/0x44a0 mm/mremap.c:852 Modules linked in: CPU: 2 UID: 0 PID: 6133 Comm: syz.0.19 Not tainted 6.17.0-rc1-syzkaller-00004-g53e760d89498 #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:move_normal_pmd mm/mremap.c:357 [inline] RIP: 0010:move_pgt_entry mm/mremap.c:595 [inline] RIP: 0010:move_page_tables+0x3832/0x44a0 mm/mremap.c:852 Code: ... RSP: 0018:ffffc900037a76d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000032930007 RCX: ffffffff820c6645 RDX: ffff88802e56a440 RSI: ffffffff820c7201 RDI: 0000000000000007 RBP: ffff888037728fc0 R08: 0000000000000007 R09: 0000000000000000 R10: 0000000032930007 R11: 0000000000000000 R12: 0000000000000000 R13: ffffc900037a79a8 R14: 0000000000000001 R15: dffffc0000000000 FS: 000055556316a500(0000) GS:ffff8880d68bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b30863fff CR3: 0000000050171000 CR4: 0000000000352ef0 Call Trace: <TASK> copy_vma_and_data+0x468/0x790 mm/mremap.c:1215 move_vma+0x548/0x1780 mm/mremap.c:1282 mremap_to+0x1b7/0x450 mm/mremap.c:1406 do_mremap+0xfad/0x1f80 mm/mremap.c:1921 __do_sys_mremap+0x119/0x170 mm/mremap.c:1977 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f00d0b8ebe9 Code: ... RSP: 002b:00007ffe5ea5ee98 EFLAGS: 00000246 ORIG_RAX: 0000000000000019 RAX: ffffffffffffffda RBX: 00007f00d0db5fa0 RCX: 00007f00d0b8ebe9 RDX: 0000000000400000 RSI: 0000000000c00000 RDI: 0000200000000000 RBP: 00007ffe5ea5eef0 R08: 0000200000c00000 R09: 0000000000000000 R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000002 R13: 00007f00d0db5fa0 R14: 00007f00d0db5fa0 R15: 0000000000000005 </TASK> The underlying issue is that we recurse during the original page table move, but not during the recovery move. Fix it by checking for both VMAs and performing the check before the pmd_none() sanity check. Add a new helper where we perform+document that check for the PMD and PUD level. Thanks to Harry for bisecting.
CVE-2025-39777 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: acomp - Fix CFI failure due to type punning To avoid a crash when control flow integrity is enabled, make the workspace ("stream") free function use a consistent type, and call it through a function pointer that has that same type.
CVE-2025-39757 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Validate UAC3 cluster segment descriptors UAC3 class segment descriptors need to be verified whether their sizes match with the declared lengths and whether they fit with the allocated buffer sizes, too. Otherwise malicious firmware may lead to the unexpected OOB accesses.
CVE-2025-39764 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: remove refcounting in expectation dumpers Same pattern as previous patch: do not keep the expectation object alive via refcount, only store a cookie value and then use that as the skip hint for dump resumption. AFAICS this has the same issue as the one resolved in the conntrack dumper, when we do if (!refcount_inc_not_zero(&exp->use)) to increment the refcount, there is a chance that exp == last, which causes a double-increment of the refcount and subsequent memory leak.
CVE-2025-39772 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/hisilicon/hibmc: fix the hibmc loaded failed bug When hibmc loaded failed, the driver use hibmc_unload to free the resource, but the mutexes in mode.config are not init, which will access an NULL pointer. Just change goto statement to return, because hibnc_hw_init() doesn't need to free anything.
CVE-2025-39785 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/hisilicon/hibmc: fix irq_request()'s irq name variable is local The local variable is passed in request_irq (), and there will be use after free problem, which will make request_irq failed. Using the global irq name instead of it to fix.
CVE-2025-39789 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: x86/aegis - Add missing error checks The skcipher_walk functions can allocate memory and can fail, so checking for errors is necessary.
CVE-2025-39783 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: Fix configfs group list head handling Doing a list_del() on the epf_group field of struct pci_epf_driver in pci_epf_remove_cfs() is not correct as this field is a list head, not a list entry. This list_del() call triggers a KASAN warning when an endpoint function driver which has a configfs attribute group is torn down: ================================================================== BUG: KASAN: slab-use-after-free in pci_epf_remove_cfs+0x17c/0x198 Write of size 8 at addr ffff00010f4a0d80 by task rmmod/319 CPU: 3 UID: 0 PID: 319 Comm: rmmod Not tainted 6.16.0-rc2 #1 NONE Hardware name: Radxa ROCK 5B (DT) Call trace: show_stack+0x2c/0x84 (C) dump_stack_lvl+0x70/0x98 print_report+0x17c/0x538 kasan_report+0xb8/0x190 __asan_report_store8_noabort+0x20/0x2c pci_epf_remove_cfs+0x17c/0x198 pci_epf_unregister_driver+0x18/0x30 nvmet_pci_epf_cleanup_module+0x24/0x30 [nvmet_pci_epf] __arm64_sys_delete_module+0x264/0x424 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xac/0x230 do_el0_svc+0x40/0x58 el0_svc+0x48/0xdc el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c ... Remove this incorrect list_del() call from pci_epf_remove_cfs().
CVE-2025-39784 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix link speed calculation on retrain failure When pcie_failed_link_retrain() fails to retrain, it tries to revert to the previous link speed. However it calculates that speed from the Link Control 2 register without masking out non-speed bits first. PCIE_LNKCTL2_TLS2SPEED() converts such incorrect values to PCI_SPEED_UNKNOWN (0xff), which in turn causes a WARN splat in pcie_set_target_speed(): pci 0000:00:01.1: [1022:14ed] type 01 class 0x060400 PCIe Root Port pci 0000:00:01.1: broken device, retraining non-functional downstream link at 2.5GT/s pci 0000:00:01.1: retraining failed WARNING: CPU: 1 PID: 1 at drivers/pci/pcie/bwctrl.c:168 pcie_set_target_speed RDX: 0000000000000001 RSI: 00000000000000ff RDI: ffff9acd82efa000 pcie_failed_link_retrain pci_device_add pci_scan_single_device Mask out the non-speed bits in PCIE_LNKCTL2_TLS2SPEED() and PCIE_LNKCAP_SLS2SPEED() so they don't incorrectly return PCI_SPEED_UNKNOWN. [bhelgaas: commit log, add details from https://lore.kernel.org/r/1c92ef6bcb314ee6977839b46b393282e4f52e74.1750684771.git.lukas@wunner.de]
CVE-2025-39786 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad7173: fix channels index for syscalib_mode Fix the index used to look up the channel when accessing the syscalib_mode attribute. The address field is a 0-based index (same as scan_index) that it used to access the channel in the ad7173_channels array throughout the driver. The channels field, on the other hand, may not match the address field depending on the channel configuration specified in the device tree and could result in an out-of-bounds access.
CVE-2025-39787 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: mdt_loader: Ensure we don't read past the ELF header When the MDT loader is used in remoteproc, the ELF header is sanitized beforehand, but that's not necessary the case for other clients. Validate the size of the firmware buffer to ensure that we don't read past the end as we iterate over the header. e_phentsize and e_shentsize are validated as well, to ensure that the assumptions about step size in the traversal are valid.
CVE-2025-39788 1 Linux 1 Linux Kernel 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: exynos: Fix programming of HCI_UTRL_NEXUS_TYPE On Google gs101, the number of UTP transfer request slots (nutrs) is 32, and in this case the driver ends up programming the UTRL_NEXUS_TYPE incorrectly as 0. This is because the left hand side of the shift is 1, which is of type int, i.e. 31 bits wide. Shifting by more than that width results in undefined behaviour. Fix this by switching to the BIT() macro, which applies correct type casting as required. This ensures the correct value is written to UTRL_NEXUS_TYPE (0xffffffff on gs101), and it also fixes a UBSAN shift warning: UBSAN: shift-out-of-bounds in drivers/ufs/host/ufs-exynos.c:1113:21 shift exponent 32 is too large for 32-bit type 'int' For consistency, apply the same change to the nutmrs / UTMRL_NEXUS_TYPE write.
CVE-2025-39790 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Detect events pointing to unexpected TREs When a remote device sends a completion event to the host, it contains a pointer to the consumed TRE. The host uses this pointer to process all of the TREs between it and the host's local copy of the ring's read pointer. This works when processing completion for chained transactions, but can lead to nasty results if the device sends an event for a single-element transaction with a read pointer that is multiple elements ahead of the host's read pointer. For instance, if the host accesses an event ring while the device is updating it, the pointer inside of the event might still point to an old TRE. If the host uses the channel's xfer_cb() to directly free the buffer pointed to by the TRE, the buffer will be double-freed. This behavior was observed on an ep that used upstream EP stack without 'commit 6f18d174b73d ("bus: mhi: ep: Update read pointer only after buffer is written")'. Where the device updated the events ring pointer before updating the event contents, so it left a window where the host was able to access the stale data the event pointed to, before the device had the chance to update them. The usual pattern was that the host received an event pointing to a TRE that is not immediately after the last processed one, so it got treated as if it was a chained transaction, processing all of the TREs in between the two read pointers. This commit aims to harden the host by ensuring transactions where the event points to a TRE that isn't local_rp + 1 are chained. [mani: added stable tag and reworded commit message]
CVE-2025-39752 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: rockchip: fix kernel hang during smp initialization In order to bring up secondary CPUs main CPU write trampoline code to SRAM. The trampoline code is written while secondary CPUs are powered on (at least that true for RK3188 CPU). Sometimes that leads to kernel hang. Probably because secondary CPU execute trampoline code while kernel doesn't expect. The patch moves SRAM initialization step to the point where all secondary CPUs are powered down. That fixes rarely hangs on RK3188: [ 0.091568] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000 [ 0.091996] rockchip_smp_prepare_cpus: ncores 4
CVE-2025-40300 1 Linux 1 Linux Kernel 2025-09-15 6.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/vmscape: Add conditional IBPB mitigation VMSCAPE is a vulnerability that exploits insufficient branch predictor isolation between a guest and a userspace hypervisor (like QEMU). Existing mitigations already protect kernel/KVM from a malicious guest. Userspace can additionally be protected by flushing the branch predictors after a VMexit. Since it is the userspace that consumes the poisoned branch predictors, conditionally issue an IBPB after a VMexit and before returning to userspace. Workloads that frequently switch between hypervisor and userspace will incur the most overhead from the new IBPB. This new IBPB is not integrated with the existing IBPB sites. For instance, a task can use the existing speculation control prctl() to get an IBPB at context switch time. With this implementation, the IBPB is doubled up: one at context switch and another before running userspace. The intent is to integrate and optimize these cases post-embargo. [ dhansen: elaborate on suboptimal IBPB solution ]
CVE-2025-39760 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: core: config: Prevent OOB read in SS endpoint companion parsing usb_parse_ss_endpoint_companion() checks descriptor type before length, enabling a potentially odd read outside of the buffer size. Fix this up by checking the size first before looking at any of the fields in the descriptor.
CVE-2025-39762 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: add null check [WHY] Prevents null pointer dereferences to enhance function robustness [HOW] Adds early null check and return false if invalid.
CVE-2025-39763 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered If a synchronous error is detected as a result of user-space process triggering a 2-bit uncorrected error, the CPU will take a synchronous error exception such as Synchronous External Abort (SEA) on Arm64. The kernel will queue a memory_failure() work which poisons the related page, unmaps the page, and then sends a SIGBUS to the process, so that a system wide panic can be avoided. However, no memory_failure() work will be queued when abnormal synchronous errors occur. These errors can include situations like invalid PA, unexpected severity, no memory failure config support, invalid GUID section, etc. In such a case, the user-space process will trigger SEA again. This loop can potentially exceed the platform firmware threshold or even trigger a kernel hard lockup, leading to a system reboot. Fix it by performing a force kill if no memory_failure() work is queued for synchronous errors. [ rjw: Changelog edits ]
CVE-2025-39737 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup() A soft lockup warning was observed on a relative small system x86-64 system with 16 GB of memory when running a debug kernel with kmemleak enabled. watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134] The test system was running a workload with hot unplug happening in parallel. Then kemleak decided to disable itself due to its inability to allocate more kmemleak objects. The debug kernel has its CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000. The soft lockup happened in kmemleak_do_cleanup() when the existing kmemleak objects were being removed and deleted one-by-one in a loop via a workqueue. In this particular case, there are at least 40,000 objects that need to be processed and given the slowness of a debug kernel and the fact that a raw_spinlock has to be acquired and released in __delete_object(), it could take a while to properly handle all these objects. As kmemleak has been disabled in this case, the object removal and deletion process can be further optimized as locking isn't really needed. However, it is probably not worth the effort to optimize for such an edge case that should rarely happen. So the simple solution is to call cond_resched() at periodic interval in the iteration loop to avoid soft lockup.