Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16823 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-71148 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/handshake: restore destructor on submit failure handshake_req_submit() replaces sk->sk_destruct but never restores it when submission fails before the request is hashed. handshake_sk_destruct() then returns early and the original destructor never runs, leaking the socket. Restore sk_destruct on the error path. | ||||
| CVE-2025-71147 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KEYS: trusted: Fix a memory leak in tpm2_load_cmd 'tpm2_load_cmd' allocates a tempoary blob indirectly via 'tpm2_key_decode' but it is not freed in the failure paths. Address this by wrapping the blob into with a cleanup helper. | ||||
| CVE-2025-71161 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dm-verity: disable recursive forward error correction There are two problems with the recursive correction: 1. It may cause denial-of-service. In fec_read_bufs, there is a loop that has 253 iterations. For each iteration, we may call verity_hash_for_block recursively. There is a limit of 4 nested recursions - that means that there may be at most 253^4 (4 billion) iterations. Red Hat QE team actually created an image that pushes dm-verity to this limit - and this image just makes the udev-worker process get stuck in the 'D' state. 2. It doesn't work. In fec_read_bufs we store data into the variable "fio->bufs", but fio bufs is shared between recursive invocations, if "verity_hash_for_block" invoked correction recursively, it would overwrite partially filled fio->bufs. | ||||
| CVE-2026-22984 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds reads in handle_auth_done() Perform an explicit bounds check on payload_len to avoid a possible out-of-bounds access in the callout. [ idryomov: changelog ] | ||||
| CVE-2026-22981 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: idpf: detach and close netdevs while handling a reset Protect the reset path from callbacks by setting the netdevs to detached state and close any netdevs in UP state until the reset handling has completed. During a reset, the driver will de-allocate resources for the vport, and there is no guarantee that those will recover, which is why the existing vport_ctrl_lock does not provide sufficient protection. idpf_detach_and_close() is called right before reset handling. If the reset handling succeeds, the netdevs state is recovered via call to idpf_attach_and_open(). If the reset handling fails the netdevs remain down. The detach/down calls are protected with RTNL lock to avoid racing with callbacks. On the recovery side the attach can be done without holding the RTNL lock as there are no callbacks expected at that point, due to detach/close always being done first in that flow. The previous logic restoring the netdevs state based on the IDPF_VPORT_UP_REQUESTED flag in the init task is not needed anymore, hence the removal of idpf_set_vport_state(). The IDPF_VPORT_UP_REQUESTED is still being used to restore the state of the netdevs following the reset, but has no use outside of the reset handling flow. idpf_init_hard_reset() is converted to void, since it was used as such and there is no error handling being done based on its return value. Before this change, invoking hard and soft resets simultaneously will cause the driver to lose the vport state: ip -br a <inf> UP echo 1 > /sys/class/net/ens801f0/device/reset& \ ethtool -L ens801f0 combined 8 ip -br a <inf> DOWN ip link set <inf> up ip -br a <inf> DOWN Also in case of a failure in the reset path, the netdev is left exposed to external callbacks, while vport resources are not initialized, leading to a crash on subsequent ifup/down: [408471.398966] idpf 0000:83:00.0: HW reset detected [408471.411744] idpf 0000:83:00.0: Device HW Reset initiated [408472.277901] idpf 0000:83:00.0: The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x2 [408508.125551] BUG: kernel NULL pointer dereference, address: 0000000000000078 [408508.126112] #PF: supervisor read access in kernel mode [408508.126687] #PF: error_code(0x0000) - not-present page [408508.127256] PGD 2aae2f067 P4D 0 [408508.127824] Oops: Oops: 0000 [#1] SMP NOPTI ... [408508.130871] RIP: 0010:idpf_stop+0x39/0x70 [idpf] ... [408508.139193] Call Trace: [408508.139637] <TASK> [408508.140077] __dev_close_many+0xbb/0x260 [408508.140533] __dev_change_flags+0x1cf/0x280 [408508.140987] netif_change_flags+0x26/0x70 [408508.141434] dev_change_flags+0x3d/0xb0 [408508.141878] devinet_ioctl+0x460/0x890 [408508.142321] inet_ioctl+0x18e/0x1d0 [408508.142762] ? _copy_to_user+0x22/0x70 [408508.143207] sock_do_ioctl+0x3d/0xe0 [408508.143652] sock_ioctl+0x10e/0x330 [408508.144091] ? find_held_lock+0x2b/0x80 [408508.144537] __x64_sys_ioctl+0x96/0xe0 [408508.144979] do_syscall_64+0x79/0x3d0 [408508.145415] entry_SYSCALL_64_after_hwframe+0x76/0x7e [408508.145860] RIP: 0033:0x7f3e0bb4caff | ||||
| CVE-2026-22980 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: nfsd: provide locking for v4_end_grace Writing to v4_end_grace can race with server shutdown and result in memory being accessed after it was freed - reclaim_str_hashtbl in particularly. We cannot hold nfsd_mutex across the nfsd4_end_grace() call as that is held while client_tracking_op->init() is called and that can wait for an upcall to nfsdcltrack which can write to v4_end_grace, resulting in a deadlock. nfsd4_end_grace() is also called by the landromat work queue and this doesn't require locking as server shutdown will stop the work and wait for it before freeing anything that nfsd4_end_grace() might access. However, we must be sure that writing to v4_end_grace doesn't restart the work item after shutdown has already waited for it. For this we add a new flag protected with nn->client_lock. It is set only while it is safe to make client tracking calls, and v4_end_grace only schedules work while the flag is set with the spinlock held. So this patch adds a nfsd_net field "client_tracking_active" which is set as described. Another field "grace_end_forced", is set when v4_end_grace is written. After this is set, and providing client_tracking_active is set, the laundromat is scheduled. This "grace_end_forced" field bypasses other checks for whether the grace period has finished. This resolves a race which can result in use-after-free. | ||||
| CVE-2026-22983 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: do not write to msg_get_inq in callee NULL pointer dereference fix. msg_get_inq is an input field from caller to callee. Don't set it in the callee, as the caller may not clear it on struct reuse. This is a kernel-internal variant of msghdr only, and the only user does reinitialize the field. So this is not critical for that reason. But it is more robust to avoid the write, and slightly simpler code. And it fixes a bug, see below. Callers set msg_get_inq to request the input queue length to be returned in msg_inq. This is equivalent to but independent from the SO_INQ request to return that same info as a cmsg (tp->recvmsg_inq). To reduce branching in the hot path the second also sets the msg_inq. That is WAI. This is a fix to commit 4d1442979e4a ("af_unix: don't post cmsg for SO_INQ unless explicitly asked for"), which fixed the inverse. Also avoid NULL pointer dereference in unix_stream_read_generic if state->msg is NULL and msg->msg_get_inq is written. A NULL state->msg can happen when splicing as of commit 2b514574f7e8 ("net: af_unix: implement splice for stream af_unix sockets"). Also collapse two branches using a bitwise or. | ||||
| CVE-2026-22979 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: fix memory leak in skb_segment_list for GRO packets When skb_segment_list() is called during packet forwarding, it handles packets that were aggregated by the GRO engine. Historically, the segmentation logic in skb_segment_list assumes that individual segments are split from a parent SKB and may need to carry their own socket memory accounting. Accordingly, the code transfers truesize from the parent to the newly created segments. Prior to commit ed4cccef64c1 ("gro: fix ownership transfer"), this truesize subtraction in skb_segment_list() was valid because fragments still carry a reference to the original socket. However, commit ed4cccef64c1 ("gro: fix ownership transfer") changed this behavior by ensuring that fraglist entries are explicitly orphaned (skb->sk = NULL) to prevent illegal orphaning later in the stack. This change meant that the entire socket memory charge remained with the head SKB, but the corresponding accounting logic in skb_segment_list() was never updated. As a result, the current code unconditionally adds each fragment's truesize to delta_truesize and subtracts it from the parent SKB. Since the fragments are no longer charged to the socket, this subtraction results in an effective under-count of memory when the head is freed. This causes sk_wmem_alloc to remain non-zero, preventing socket destruction and leading to a persistent memory leak. The leak can be observed via KMEMLEAK when tearing down the networking environment: unreferenced object 0xffff8881e6eb9100 (size 2048): comm "ping", pid 6720, jiffies 4295492526 backtrace: kmem_cache_alloc_noprof+0x5c6/0x800 sk_prot_alloc+0x5b/0x220 sk_alloc+0x35/0xa00 inet6_create.part.0+0x303/0x10d0 __sock_create+0x248/0x640 __sys_socket+0x11b/0x1d0 Since skb_segment_list() is exclusively used for SKB_GSO_FRAGLIST packets constructed by GRO, the truesize adjustment is removed. The call to skb_release_head_state() must be preserved. As documented in commit cf673ed0e057 ("net: fix fraglist segmentation reference count leak"), it is still required to correctly drop references to SKB extensions that may be overwritten during __copy_skb_header(). | ||||
| CVE-2025-71145 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: usb: phy: isp1301: fix non-OF device reference imbalance A recent change fixing a device reference leak in a UDC driver introduced a potential use-after-free in the non-OF case as the isp1301_get_client() helper only increases the reference count for the returned I2C device in the OF case. Increment the reference count also for non-OF so that the caller can decrement it unconditionally. Note that this is inherently racy just as using the returned I2C device is since nothing is preventing the PHY driver from being unbound while in use. | ||||
| CVE-2025-71151 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix memory and information leak in smb3_reconfigure() In smb3_reconfigure(), if smb3_sync_session_ctx_passwords() fails, the function returns immediately without freeing and erasing the newly allocated new_password and new_password2. This causes both a memory leak and a potential information leak. Fix this by calling kfree_sensitive() on both password buffers before returning in this error case. | ||||
| CVE-2026-23013 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to ioq_vector. If request_irq() fails part-way, the rollback loop calls free_irq() with dev_id set to 'oct', which does not match the original dev_id and may leave the irqaction registered. This can keep IRQ handlers alive while ioq_vector is later freed during unwind/teardown, leading to a use-after-free or crash when an interrupt fires. Fix the error path to free IRQs with the same ioq_vector dev_id used during request_irq(). | ||||
| CVE-2026-22996 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Don't store mlx5e_priv in mlx5e_dev devlink priv mlx5e_priv is an unstable structure that can be memset(0) if profile attaching fails, mlx5e_priv in mlx5e_dev devlink private is used to reference the netdev and mdev associated with that struct. Instead, store netdev directly into mlx5e_dev and get mdev from the containing mlx5_adev aux device structure. This fixes a kernel oops in mlx5e_remove when switchdev mode fails due to change profile failure. $ devlink dev eswitch set pci/0000:00:03.0 mode switchdev Error: mlx5_core: Failed setting eswitch to offloads. dmesg: workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 $ devlink dev reload pci/0000:00:03.0 ==> oops BUG: kernel NULL pointer dereference, address: 0000000000000520 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 3 UID: 0 PID: 521 Comm: devlink Not tainted 6.18.0-rc5+ #117 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_remove+0x68/0x130 RSP: 0018:ffffc900034838f0 EFLAGS: 00010246 RAX: ffff88810283c380 RBX: ffff888101874400 RCX: ffffffff826ffc45 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff888102d789c0 R08: ffff8881007137f0 R09: ffff888100264e10 R10: ffffc90003483898 R11: ffffc900034838a0 R12: ffff888100d261a0 R13: ffff888100d261a0 R14: ffff8881018749a0 R15: ffff888101874400 FS: 00007f8565fea740(0000) GS:ffff88856a759000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000520 CR3: 000000010b11a004 CR4: 0000000000370ef0 Call Trace: <TASK> device_release_driver_internal+0x19c/0x200 bus_remove_device+0xc6/0x130 device_del+0x160/0x3d0 ? devl_param_driverinit_value_get+0x2d/0x90 mlx5_detach_device+0x89/0xe0 mlx5_unload_one_devl_locked+0x3a/0x70 mlx5_devlink_reload_down+0xc8/0x220 devlink_reload+0x7d/0x260 devlink_nl_reload_doit+0x45b/0x5a0 genl_family_rcv_msg_doit+0xe8/0x140 | ||||
| CVE-2026-22990 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: libceph: replace overzealous BUG_ON in osdmap_apply_incremental() If the osdmap is (maliciously) corrupted such that the incremental osdmap epoch is different from what is expected, there is no need to BUG. Instead, just declare the incremental osdmap to be invalid. | ||||
| CVE-2026-23000 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix crash on profile change rollback failure mlx5e_netdev_change_profile can fail to attach a new profile and can fail to rollback to old profile, in such case, we could end up with a dangling netdev with a fully reset netdev_priv. A retry to change profile, e.g. another attempt to call mlx5e_netdev_change_profile via switchdev mode change, will crash trying to access the now NULL priv->mdev. This fix allows mlx5e_netdev_change_profile() to handle previous failures and an empty priv, by not assuming priv is valid. Pass netdev and mdev to all flows requiring mlx5e_netdev_change_profile() and avoid passing priv. In mlx5e_netdev_change_profile() check if current priv is valid, and if not, just attach the new profile without trying to access the old one. This fixes the following oops, when enabling switchdev mode for the 2nd time after first time failure: ## Enabling switchdev mode first time: mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 ^^^^^^^^ mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) ## retry: Enabling switchdev mode 2nd time: mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload BUG: kernel NULL pointer dereference, address: 0000000000000038 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_detach_netdev+0x3c/0x90 Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07 RSP: 0018:ffffc90000673890 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000 RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000 R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000 R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000 FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0 Call Trace: <TASK> mlx5e_netdev_change_profile+0x45/0xb0 mlx5e_vport_rep_load+0x27b/0x2d0 mlx5_esw_offloads_rep_load+0x72/0xf0 esw_offloads_enable+0x5d0/0x970 mlx5_eswitch_enable_locked+0x349/0x430 ? is_mp_supported+0x57/0xb0 mlx5_devlink_eswitch_mode_set+0x26b/0x430 devlink_nl_eswitch_set_doit+0x6f/0xf0 genl_family_rcv_msg_doit+0xe8/0x140 genl_rcv_msg+0x18b/0x290 ? __pfx_devlink_nl_pre_doit+0x10/0x10 ? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10 ? __pfx_devlink_nl_post_doit+0x10/0x10 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x52/0x100 genl_rcv+0x28/0x40 netlink_unicast+0x282/0x3e0 ? __alloc_skb+0xd6/0x190 netlink_sendmsg+0x1f7/0x430 __sys_sendto+0x213/0x220 ? __sys_recvmsg+0x6a/0xd0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x50/0x1f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fdfb8495047 | ||||
| CVE-2026-22995 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ublk: fix use-after-free in ublk_partition_scan_work A race condition exists between the async partition scan work and device teardown that can lead to a use-after-free of ub->ub_disk: 1. ublk_ctrl_start_dev() schedules partition_scan_work after add_disk() 2. ublk_stop_dev() calls ublk_stop_dev_unlocked() which does: - del_gendisk(ub->ub_disk) - ublk_detach_disk() sets ub->ub_disk = NULL - put_disk() which may free the disk 3. The worker ublk_partition_scan_work() then dereferences ub->ub_disk leading to UAF Fix this by using ublk_get_disk()/ublk_put_disk() in the worker to hold a reference to the disk during the partition scan. The spinlock in ublk_get_disk() synchronizes with ublk_detach_disk() ensuring the worker either gets a valid reference or sees NULL and exits early. Also change flush_work() to cancel_work_sync() to avoid running the partition scan work unnecessarily when the disk is already detached. | ||||
| CVE-2026-22986 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix race condition for gdev->srcu If two drivers were calling gpiochip_add_data_with_key(), one may be traversing the srcu-protected list in gpio_name_to_desc(), meanwhile other has just added its gdev in gpiodev_add_to_list_unlocked(). This creates a non-mutexed and non-protected timeframe, when one instance is dereferencing and using &gdev->srcu, before the other has initialized it, resulting in crash: [ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000 [ 4.943396] Mem abort info: [ 4.943400] ESR = 0x0000000096000005 [ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits [ 4.943407] SET = 0, FnV = 0 [ 4.943410] EA = 0, S1PTW = 0 [ 4.943413] FSC = 0x05: level 1 translation fault [ 4.943416] Data abort info: [ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000 [ 4.961449] [ffff800272bcc000] pgd=0000000000000000 [ 4.969203] , p4d=1000000039739003 [ 4.979730] , pud=0000000000000000 [ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset" [ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP ... [ 5.121359] pc : __srcu_read_lock+0x44/0x98 [ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0 [ 5.153671] sp : ffff8000833bb430 [ 5.298440] [ 5.298443] Call trace: [ 5.298445] __srcu_read_lock+0x44/0x98 [ 5.309484] gpio_name_to_desc+0x60/0x1a0 [ 5.320692] gpiochip_add_data_with_key+0x488/0xf00 5.946419] ---[ end trace 0000000000000000 ]--- Move initialization code for gdev fields before it is added to gpio_devices, with adjacent initialization code. Adjust goto statements to reflect modified order of operations [Bartosz: fixed a build issue, removed stray newline] | ||||
| CVE-2026-23007 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block: zero non-PI portion of auto integrity buffer The auto-generated integrity buffer for writes needs to be fully initialized before being passed to the underlying block device, otherwise the uninitialized memory can be read back by userspace or anyone with physical access to the storage device. If protection information is generated, that portion of the integrity buffer is already initialized. The integrity data is also zeroed if PI generation is disabled via sysfs or the PI tuple size is 0. However, this misses the case where PI is generated and the PI tuple size is nonzero, but the metadata size is larger than the PI tuple. In this case, the remainder ("opaque") of the metadata is left uninitialized. Generalize the BLK_INTEGRITY_CSUM_NONE check to cover any case when the metadata is larger than just the PI tuple. | ||||
| CVE-2026-22992 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: libceph: return the handler error from mon_handle_auth_done() Currently any error from ceph_auth_handle_reply_done() is propagated via finish_auth() but isn't returned from mon_handle_auth_done(). This results in higher layers learning that (despite the monitor considering us to be successfully authenticated) something went wrong in the authentication phase and reacting accordingly, but msgr2 still trying to proceed with establishing the session in the background. In the case of secure mode this can trigger a WARN in setup_crypto() and later lead to a NULL pointer dereference inside of prepare_auth_signature(). | ||||
| CVE-2026-23012 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: remove call_control in inactive contexts If damon_call() is executed against a DAMON context that is not running, the function returns error while keeping the damon_call_control object linked to the context's call_controls list. Let's suppose the object is deallocated after the damon_call(), and yet another damon_call() is executed against the same context. The function tries to add the new damon_call_control object to the call_controls list, which still has the pointer to the previous damon_call_control object, which is deallocated. As a result, use-after-free happens. This can actually be triggered using the DAMON sysfs interface. It is not easily exploitable since it requires the sysfs write permission and making a definitely weird file writes, though. Please refer to the report for more details about the issue reproduction steps. Fix the issue by making two changes. Firstly, move the final kdamond_call() for cancelling all existing damon_call() requests from terminating DAMON context to be done before the ctx->kdamond reset. This makes any code that sees NULL ctx->kdamond can safely assume the context may not access damon_call() requests anymore. Secondly, let damon_call() to cleanup the damon_call_control objects that were added to the already-terminated DAMON context, before returning the error. | ||||
| CVE-2026-23004 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list() syzbot was able to crash the kernel in rt6_uncached_list_flush_dev() in an interesting way [1] Crash happens in list_del_init()/INIT_LIST_HEAD() while writing list->prev, while the prior write on list->next went well. static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); // This went well WRITE_ONCE(list->prev, list); // Crash, @list has been freed. } Issue here is that rt6_uncached_list_del() did not attempt to lock ul->lock, as list_empty(&rt->dst.rt_uncached) returned true because the WRITE_ONCE(list->next, list) happened on the other CPU. We might use list_del_init_careful() and list_empty_careful(), or make sure rt6_uncached_list_del() always grabs the spinlock whenever rt->dst.rt_uncached_list has been set. A similar fix is neeed for IPv4. [1] BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline] BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline] BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450 CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)} Tainted: [L]=SOFTLOCKUP Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: netns cleanup_net Call Trace: <TASK> dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 INIT_LIST_HEAD include/linux/list.h:46 [inline] list_del_init include/linux/list.h:296 [inline] rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853 addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1 notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85 call_netdevice_notifiers_extack net/core/dev.c:2268 [inline] call_netdevice_notifiers net/core/dev.c:2282 [inline] netif_close_many+0x29c/0x410 net/core/dev.c:1785 unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353 ops_exit_rtnl_list net/core/net_namespace.c:187 [inline] ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248 cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> Allocated by task 803: kasan_save_stack mm/kasan/common.c:57 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:78 unpoison_slab_object mm/kasan/common.c:340 [inline] __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366 kasan_slab_alloc include/linux/kasan.h:253 [inline] slab_post_alloc_hook mm/slub.c:4953 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270 dst_alloc+0x105/0x170 net/core/dst.c:89 ip6_dst_alloc net/ipv6/route.c:342 [inline] icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333 mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr ---truncated--- | ||||