Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
15625 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53788 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: hda/ca0132: fixup buffer overrun at tuning_ctl_set() tuning_ctl_set() might have buffer overrun at (X) if it didn't break from loop by matching (A). static int tuning_ctl_set(...) { for (i = 0; i < TUNING_CTLS_COUNT; i++) (A) if (nid == ca0132_tuning_ctls[i].nid) break; snd_hda_power_up(...); (X) dspio_set_param(..., ca0132_tuning_ctls[i].mid, ...); snd_hda_power_down(...); ^ return 1; } We will get below error by cppcheck sound/pci/hda/patch_ca0132.c:4229:2: note: After for loop, i has value 12 for (i = 0; i < TUNING_CTLS_COUNT; i++) ^ sound/pci/hda/patch_ca0132.c:4234:43: note: Array index out of bounds dspio_set_param(codec, ca0132_tuning_ctls[i].mid, 0x20, ^ This patch cares non match case. | ||||
| CVE-2023-53785 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: don't assume adequate headroom for SDIO headers mt7921_usb_sdio_tx_prepare_skb() calls mt7921_usb_sdio_write_txwi() and mt7921_skb_add_usb_sdio_hdr(), both of which blindly assume that adequate headroom will be available in the passed skb. This assumption typically is satisfied when the skb was allocated in the net core for transmission via the mt7921 netdev (although even that is only an optimization and is not strictly guaranteed), but the assumption is sometimes not satisfied when the skb originated in the receive path of another netdev and was passed through to the mt7921, such as by the bridge layer. Blindly prepending bytes to an skb is always wrong. This commit introduces a call to skb_cow_head() before the call to mt7921_usb_sdio_write_txwi() in mt7921_usb_sdio_tx_prepare_skb() to ensure that at least MT_SDIO_TXD_SIZE + MT_SDIO_HDR_SIZE bytes can be pushed onto the skb. Without this fix, I can trivially cause kernel panics by bridging an MT7921AU-based USB 802.11ax interface with an Ethernet interface on an Intel Atom-based x86 system using its onboard RTL8169 PCI Ethernet adapter and also on an ARM-based Raspberry Pi 1 using its onboard SMSC9512 USB Ethernet adapter. Note that the panics do not occur in every system configuration, as they occur only if the receiving netdev leaves less headroom in its received skbs than the mt7921 needs for its SDIO headers. Here is an example stack trace of this panic on Raspberry Pi OS Lite 2023-02-21 running kernel 6.1.24+ [1]: skb_panic from skb_push+0x44/0x48 skb_push from mt7921_usb_sdio_tx_prepare_skb+0xd4/0x190 [mt7921_common] mt7921_usb_sdio_tx_prepare_skb [mt7921_common] from mt76u_tx_queue_skb+0x94/0x1d0 [mt76_usb] mt76u_tx_queue_skb [mt76_usb] from __mt76_tx_queue_skb+0x4c/0xc8 [mt76] __mt76_tx_queue_skb [mt76] from mt76_txq_schedule.part.0+0x13c/0x398 [mt76] mt76_txq_schedule.part.0 [mt76] from mt76_txq_schedule_all+0x24/0x30 [mt76] mt76_txq_schedule_all [mt76] from mt7921_tx_worker+0x58/0xf4 [mt7921_common] mt7921_tx_worker [mt7921_common] from __mt76_worker_fn+0x9c/0xec [mt76] __mt76_worker_fn [mt76] from kthread+0xbc/0xe0 kthread from ret_from_fork+0x14/0x34 After this fix, bridging the mt7921 interface works fine on both of my previously problematic systems. [1] https://github.com/raspberrypi/firmware/tree/5c276f55a4b21345cd4d6200a504ee991851ff7a | ||||
| CVE-2022-50672 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mailbox: zynq-ipi: fix error handling while device_register() fails If device_register() fails, it has two issues: 1. The name allocated by dev_set_name() is leaked. 2. The parent of device is not NULL, device_unregister() is called in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because of removing not added device. Call put_device() to give up the reference, so the name is freed in kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes() to avoid null-ptr-deref. | ||||
| CVE-2022-50674 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso. | ||||
| CVE-2023-53847 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb-storage: alauda: Fix uninit-value in alauda_check_media() Syzbot got KMSAN to complain about access to an uninitialized value in the alauda subdriver of usb-storage: BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0 drivers/usb/storage/alauda.c:1137 CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x191/0x1f0 lib/dump_stack.c:113 kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108 __msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250 alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460 The problem is that alauda_check_media() doesn't verify that its USB transfer succeeded before trying to use the received data. What should happen if the transfer fails isn't entirely clear, but a reasonably conservative approach is to pretend that no media is present. A similar problem exists in a usb_stor_dbg() call in alauda_get_media_status(). In this case, when an error occurs the call is redundant, because usb_stor_ctrl_transfer() already will print a debugging message. Finally, unrelated to the uninitialized memory access, is the fact that alauda_check_media() performs DMA to a buffer on the stack. Fortunately usb-storage provides a general purpose DMA-able buffer for uses like this. We'll use it instead. | ||||
| CVE-2023-53799 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: crypto: api - Use work queue in crypto_destroy_instance The function crypto_drop_spawn expects to be called in process context. However, when an instance is unregistered while it still has active users, the last user may cause the instance to be freed in atomic context. Fix this by delaying the freeing to a work queue. | ||||
| CVE-2022-50675 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()). | ||||
| CVE-2022-50660 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ipw2200: fix memory leak in ipw_wdev_init() In the error path of ipw_wdev_init(), exception value is returned, and the memory applied for in the function is not released. Also the memory is not released in ipw_pci_probe(). As a result, memory leakage occurs. So memory release needs to be added to the error path of ipw_wdev_init(). | ||||
| CVE-2023-53856 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: of: overlay: Call of_changeset_init() early When of_overlay_fdt_apply() fails, the changeset may be partially applied, and the caller is still expected to call of_overlay_remove() to clean up this partial state. However, of_overlay_apply() calls of_resolve_phandles() before init_overlay_changeset(). Hence if the overlay fails to apply due to an unresolved symbol, the overlay_changeset.cset.entries list is still uninitialized, and cleanup will crash with a NULL-pointer dereference in overlay_removal_is_ok(). Fix this by moving the call to of_changeset_init() from init_overlay_changeset() to of_overlay_fdt_apply(), where all other early initialization is done. | ||||
| CVE-2022-50661 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: seccomp: Move copy_seccomp() to no failure path. Our syzbot instance reported memory leaks in do_seccomp() [0], similar to the report [1]. It shows that we miss freeing struct seccomp_filter and some objects included in it. We can reproduce the issue with the program below [2] which calls one seccomp() and two clone() syscalls. The first clone()d child exits earlier than its parent and sends a signal to kill it during the second clone(), more precisely before the fatal_signal_pending() test in copy_process(). When the parent receives the signal, it has to destroy the embryonic process and return -EINTR to user space. In the failure path, we have to call seccomp_filter_release() to decrement the filter's refcount. Initially, we called it in free_task() called from the failure path, but the commit 3a15fb6ed92c ("seccomp: release filter after task is fully dead") moved it to release_task() to notify user space as early as possible that the filter is no longer used. To keep the change and current seccomp refcount semantics, let's move copy_seccomp() just after the signal check and add a WARN_ON_ONCE() in free_task() for future debugging. [0]: unreferenced object 0xffff8880063add00 (size 256): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.914s) hex dump (first 32 bytes): 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace: do_seccomp (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/seccomp.c:666 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffffc90000035000 (size 4096): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: __vmalloc_node_range (mm/vmalloc.c:3226) __vmalloc_node (mm/vmalloc.c:3261 (discriminator 4)) bpf_prog_alloc_no_stats (kernel/bpf/core.c:91) bpf_prog_alloc (kernel/bpf/core.c:129) bpf_prog_create_from_user (net/core/filter.c:1414) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888003fa1000 (size 1024): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: bpf_prog_alloc_no_stats (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/bpf/core.c:95) bpf_prog_alloc (kernel/bpf/core.c:129) bpf_prog_create_from_user (net/core/filter.c:1414) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888006360240 (size 16): comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s) hex dump (first 16 bytes): 01 00 37 00 76 65 72 6c e0 83 01 06 80 88 ff ff ..7.verl........ backtrace: bpf_prog_store_orig_filter (net/core/filter.c:1137) bpf_prog_create_from_user (net/core/filter.c:1428) do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) unreferenced object 0xffff888 ---truncated--- | ||||
| CVE-2022-50662 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: fix memory leak in hns_roce_alloc_mr() When hns_roce_mr_enable() failed in hns_roce_alloc_mr(), mr_key is not released. Compiled test only. | ||||
| CVE-2023-53793 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: perf tool x86: Fix perf_env memory leak Found by leak sanitizer: ``` ==1632594==ERROR: LeakSanitizer: detected memory leaks Direct leak of 21 byte(s) in 1 object(s) allocated from: #0 0x7f2953a7077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439 #1 0x556701d6fbbf in perf_env__read_cpuid util/env.c:369 #2 0x556701d70589 in perf_env__cpuid util/env.c:465 #3 0x55670204bba2 in x86__is_amd_cpu arch/x86/util/env.c:14 #4 0x5567020487a2 in arch__post_evsel_config arch/x86/util/evsel.c:83 #5 0x556701d8f78b in evsel__config util/evsel.c:1366 #6 0x556701ef5872 in evlist__config util/record.c:108 #7 0x556701cd6bcd in test__PERF_RECORD tests/perf-record.c:112 #8 0x556701cacd07 in run_test tests/builtin-test.c:236 #9 0x556701cacfac in test_and_print tests/builtin-test.c:265 #10 0x556701cadddb in __cmd_test tests/builtin-test.c:402 #11 0x556701caf2aa in cmd_test tests/builtin-test.c:559 #12 0x556701d3b557 in run_builtin tools/perf/perf.c:323 #13 0x556701d3bac8 in handle_internal_command tools/perf/perf.c:377 #14 0x556701d3be90 in run_argv tools/perf/perf.c:421 #15 0x556701d3c3f8 in main tools/perf/perf.c:537 #16 0x7f2952a46189 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 SUMMARY: AddressSanitizer: 21 byte(s) leaked in 1 allocation(s). ``` | ||||
| CVE-2022-50664 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: fix leak of memory fw | ||||
| CVE-2022-50640 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mmc: core: Fix kernel panic when remove non-standard SDIO card SDIO tuple is only allocated for standard SDIO card, especially it causes memory corruption issues when the non-standard SDIO card has removed, which is because the card device's reference counter does not increase for it at sdio_init_func(), but all SDIO card device reference counter gets decreased at sdio_release_func(). | ||||
| CVE-2022-50641 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: HSI: omap_ssi: Fix refcount leak in ssi_probe When returning or breaking early from a for_each_available_child_of_node() loop, we need to explicitly call of_node_put() on the child node to possibly release the node. | ||||
| CVE-2023-53826 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show() Wear-leveling entry could be freed in error path, which may be accessed again in eraseblk_count_seq_show(), for example: __erase_worker eraseblk_count_seq_show wl = ubi->lookuptbl[*block_number] if (wl) wl_entry_destroy ubi->lookuptbl[e->pnum] = NULL kmem_cache_free(ubi_wl_entry_slab, e) erase_count = wl->ec // UAF! Wear-leveling entry updating/accessing in ubi->lookuptbl should be protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize wl entry accessing between wl_entry_destroy() and eraseblk_count_seq_show(). Fetch a reproducer in [Link]. | ||||
| CVE-2022-50679 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler. | ||||
| CVE-2023-53823 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block/rq_qos: protect rq_qos apis with a new lock commit 50e34d78815e ("block: disable the elevator int del_gendisk") move rq_qos_exit() from disk_release() to del_gendisk(), this will introduce some problems: 1) If rq_qos_add() is triggered by enabling iocost/iolatency through cgroupfs, then it can concurrent with del_gendisk(), it's not safe to write 'q->rq_qos' concurrently. 2) Activate cgroup policy that is relied on rq_qos will call rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is called in the middle, null-ptr-dereference will be triggered in blkcg_activate_policy(). 3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the disk, then if rq_qos_exit() from del_gendisk() is done before rq_qos_add(), then memory will be leaked. This patch add a new disk level mutex 'rq_qos_mutex': 1) The lock will protect rq_qos_exit() directly. 2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be called from disk initialization for now because wbt can't be destructed until rq_qos_exit(), so it's safe not to protect wbt for now. Hoever, in case that rq_qos dynamically destruction is supported in the furture, this patch also protect rq_qos_add() from wbt_init() directly, this is enough because blk-sysfs already synchronize writers with disk removal. 3) For iocost and iolatency, in order to synchronize disk removal and cgroup configuration, the lock is held after blkdev_get_no_open() from blkg_conf_open_bdev(), and is released in blkg_conf_exit(). In order to fix the above memory leak, disk_live() is checked after holding the new lock. | ||||
| CVE-2023-53804 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode() During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). However, since nilfs_evict_inode() uses nilfs_root for some cleanup operations, it may cause use-after-free read if inodes are left in "garbage_list" and released by nilfs_dispose_list() at the end of nilfs_detach_log_writer(). Fix this issue by modifying nilfs_evict_inode() to only clear inode without additional metadata changes that use nilfs_root if the file system is degraded to read-only or the writer is detached. | ||||
| CVE-2023-53811 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Cap MSIX used to online CPUs + 1 The irdma driver can use a maximum number of msix vectors equal to num_online_cpus() + 1 and the kernel warning stack below is shown if that number is exceeded. The kernel throws a warning as the driver tries to update the affinity hint with a CPU mask greater than the max CPU IDs. Fix this by capping the MSIX vectors to num_online_cpus() + 1. WARNING: CPU: 7 PID: 23655 at include/linux/cpumask.h:106 irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] RIP: 0010:irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] Call Trace: irdma_rt_init_hw+0xa62/0x1290 [irdma] ? irdma_alloc_local_mac_entry+0x1a0/0x1a0 [irdma] ? __is_kernel_percpu_address+0x63/0x310 ? rcu_read_lock_held_common+0xe/0xb0 ? irdma_lan_unregister_qset+0x280/0x280 [irdma] ? irdma_request_reset+0x80/0x80 [irdma] ? ice_get_qos_params+0x84/0x390 [ice] irdma_probe+0xa40/0xfc0 [irdma] ? rcu_read_lock_bh_held+0xd0/0xd0 ? irdma_remove+0x140/0x140 [irdma] ? rcu_read_lock_sched_held+0x62/0xe0 ? down_write+0x187/0x3d0 ? auxiliary_match_id+0xf0/0x1a0 ? irdma_remove+0x140/0x140 [irdma] auxiliary_bus_probe+0xa6/0x100 __driver_probe_device+0x4a4/0xd50 ? __device_attach_driver+0x2c0/0x2c0 driver_probe_device+0x4a/0x110 __driver_attach+0x1aa/0x350 bus_for_each_dev+0x11d/0x1b0 ? subsys_dev_iter_init+0xe0/0xe0 bus_add_driver+0x3b1/0x610 driver_register+0x18e/0x410 ? 0xffffffffc0b88000 irdma_init_module+0x50/0xaa [irdma] do_one_initcall+0x103/0x5f0 ? perf_trace_initcall_level+0x420/0x420 ? do_init_module+0x4e/0x700 ? __kasan_kmalloc+0x7d/0xa0 ? kmem_cache_alloc_trace+0x188/0x2b0 ? kasan_unpoison+0x21/0x50 do_init_module+0x1d1/0x700 load_module+0x3867/0x5260 ? layout_and_allocate+0x3990/0x3990 ? rcu_read_lock_held_common+0xe/0xb0 ? rcu_read_lock_sched_held+0x62/0xe0 ? rcu_read_lock_bh_held+0xd0/0xd0 ? __vmalloc_node_range+0x46b/0x890 ? lock_release+0x5c8/0xba0 ? alloc_vm_area+0x120/0x120 ? selinux_kernel_module_from_file+0x2a5/0x300 ? __inode_security_revalidate+0xf0/0xf0 ? __do_sys_init_module+0x1db/0x260 __do_sys_init_module+0x1db/0x260 ? load_module+0x5260/0x5260 ? do_syscall_64+0x22/0x450 do_syscall_64+0xa5/0x450 entry_SYSCALL_64_after_hwframe+0x66/0xdb | ||||