Filtered by vendor Linux Subscriptions
Total 15470 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40179 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: verify orphan file size is not too big In principle orphan file can be arbitrarily large. However orphan replay needs to traverse it all and we also pin all its buffers in memory. Thus filesystems with absurdly large orphan files can lead to big amounts of memory consumed. Limit orphan file size to a sane value and also use kvmalloc() for allocating array of block descriptor structures to avoid large order allocations for sane but large orphan files.
CVE-2025-40178 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pid: Add a judgment for ns null in pid_nr_ns __task_pid_nr_ns ns = task_active_pid_ns(current); pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); if (pid && ns->level <= pid->level) { Sometimes null is returned for task_active_pid_ns. Then it will trigger kernel panic in pid_nr_ns. For example: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058 Mem abort info: ESR = 0x0000000096000007 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x07: level 3 translation fault Data abort info: ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 39-bit VAs, pgdp=00000002175aa000 [0000000000000058] pgd=08000002175ab003, p4d=08000002175ab003, pud=08000002175ab003, pmd=08000002175be003, pte=0000000000000000 pstate: 834000c5 (Nzcv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : __task_pid_nr_ns+0x74/0xd0 lr : __task_pid_nr_ns+0x24/0xd0 sp : ffffffc08001bd10 x29: ffffffc08001bd10 x28: ffffffd4422b2000 x27: 0000000000000001 x26: ffffffd442821168 x25: ffffffd442821000 x24: 00000f89492eab31 x23: 00000000000000c0 x22: ffffff806f5693c0 x21: ffffff806f5693c0 x20: 0000000000000001 x19: 0000000000000000 x18: 0000000000000000 x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 00000000023a1adc x14: 0000000000000003 x13: 00000000007ef6d8 x12: 001167c391c78800 x11: 00ffffffffffffff x10: 0000000000000000 x9 : 0000000000000001 x8 : ffffff80816fa3c0 x7 : 0000000000000000 x6 : 49534d702d535449 x5 : ffffffc080c4c2c0 x4 : ffffffd43ee128c8 x3 : ffffffd43ee124dc x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffffff806f5693c0 Call trace: __task_pid_nr_ns+0x74/0xd0 ... __handle_irq_event_percpu+0xd4/0x284 handle_irq_event+0x48/0xb0 handle_fasteoi_irq+0x160/0x2d8 generic_handle_domain_irq+0x44/0x60 gic_handle_irq+0x4c/0x114 call_on_irq_stack+0x3c/0x74 do_interrupt_handler+0x4c/0x84 el1_interrupt+0x34/0x58 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x68/0x6c account_kernel_stack+0x60/0x144 exit_task_stack_account+0x1c/0x80 do_exit+0x7e4/0xaf8 ... get_signal+0x7bc/0x8d8 do_notify_resume+0x128/0x828 el0_svc+0x6c/0x70 el0t_64_sync_handler+0x68/0xbc el0t_64_sync+0x1a8/0x1ac Code: 35fffe54 911a02a8 f9400108 b4000128 (b9405a69) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt
CVE-2025-40177 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Fix bootlog initialization ordering As soon as we queue MHI buffers to receive the bootlog from the device, we could be receiving data. Therefore all the resources needed to process that data need to be setup prior to queuing the buffers. We currently initialize some of the resources after queuing the buffers which creates a race between the probe() and any data that comes back from the device. If the uninitialized resources are accessed, we could see page faults. Fix the init ordering to close the race.
CVE-2025-40176 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tls: wait for pending async decryptions if tls_strp_msg_hold fails Async decryption calls tls_strp_msg_hold to create a clone of the input skb to hold references to the memory it uses. If we fail to allocate that clone, proceeding with async decryption can lead to various issues (UAF on the skb, writing into userspace memory after the recv() call has returned). In this case, wait for all pending decryption requests.
CVE-2025-40175 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: idpf: cleanup remaining SKBs in PTP flows When the driver requests Tx timestamp value, one of the first steps is to clone SKB using skb_get. It increases the reference counter for that SKB to prevent unexpected freeing by another component. However, there may be a case where the index is requested, SKB is assigned and never consumed by PTP flows - for example due to reset during running PTP apps. Add a check in release timestamping function to verify if the SKB assigned to Tx timestamp latch was freed, and release remaining SKBs.
CVE-2025-40174 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Fix SMP ordering in switch_mm_irqs_off() Stephen noted that it is possible to not have an smp_mb() between the loaded_mm store and the tlb_gen load in switch_mm(), meaning the ordering against flush_tlb_mm_range() goes out the window, and it becomes possible for switch_mm() to not observe a recent tlb_gen update and fail to flush the TLBs. [ dhansen: merge conflict fixed by Ingo ]
CVE-2025-40173 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/ip6_tunnel: Prevent perpetual tunnel growth Similarly to ipv4 tunnel, ipv6 version updates dev->needed_headroom, too. While ipv4 tunnel headroom adjustment growth was limited in commit 5ae1e9922bbd ("net: ip_tunnel: prevent perpetual headroom growth"), ipv6 tunnel yet increases the headroom without any ceiling. Reflect ipv4 tunnel headroom adjustment limit on ipv6 version. Credits to Francesco Ruggeri, who was originally debugging this issue and wrote local Arista-specific patch and a reproducer.
CVE-2025-40172 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Treat remaining == 0 as error in find_and_map_user_pages() Currently, if find_and_map_user_pages() takes a DMA xfer request from the user with a length field set to 0, or in a rare case, the host receives QAIC_TRANS_DMA_XFER_CONT from the device where resources->xferred_dma_size is equal to the requested transaction size, the function will return 0 before allocating an sgt or setting the fields of the dma_xfer struct. In that case, encode_addr_size_pairs() will try to access the sgt which will lead to a general protection fault. Return an EINVAL in case the user provides a zero-sized ALP, or the device requests continuation after all of the bytes have been transferred.
CVE-2025-40171 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet-fc: move lsop put work to nvmet_fc_ls_req_op It’s possible for more than one async command to be in flight from __nvmet_fc_send_ls_req. For each command, a tgtport reference is taken. In the current code, only one put work item is queued at a time, which results in a leaked reference. To fix this, move the work item to the nvmet_fc_ls_req_op struct, which already tracks all resources related to the command.
CVE-2025-40170 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: use dst_dev_rcu() in sk_setup_caps() Use RCU to protect accesses to dst->dev from sk_setup_caps() and sk_dst_gso_max_size(). Also use dst_dev_rcu() in ip6_dst_mtu_maybe_forward(), and ip_dst_mtu_maybe_forward(). ip4_dst_hoplimit() can use dst_dev_net_rcu().
CVE-2025-40169 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Reject negative offsets for ALU ops When verifying BPF programs, the check_alu_op() function validates instructions with ALU operations. The 'offset' field in these instructions is a signed 16-bit integer. The existing check 'insn->off > 1' was intended to ensure the offset is either 0, or 1 for BPF_MOD/BPF_DIV. However, because 'insn->off' is signed, this check incorrectly accepts all negative values (e.g., -1). This commit tightens the validation by changing the condition to '(insn->off != 0 && insn->off != 1)'. This ensures that any value other than the explicitly permitted 0 and 1 is rejected, hardening the verifier against malformed BPF programs.
CVE-2025-40168 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smc: Use __sk_dst_get() and dst_dev_rcu() in smc_clc_prfx_match(). smc_clc_prfx_match() is called from smc_listen_work() and not under RCU nor RTNL. Using sk_dst_get(sk)->dev could trigger UAF. Let's use __sk_dst_get() and dst_dev_rcu(). Note that the returned value of smc_clc_prfx_match() is not used in the caller.
CVE-2025-40167 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: detect invalid INLINE_DATA + EXTENTS flag combination syzbot reported a BUG_ON in ext4_es_cache_extent() when opening a verity file on a corrupted ext4 filesystem mounted without a journal. The issue is that the filesystem has an inode with both the INLINE_DATA and EXTENTS flags set: EXT4-fs error (device loop0): ext4_cache_extents:545: inode #15: comm syz.0.17: corrupted extent tree: lblk 0 < prev 66 Investigation revealed that the inode has both flags set: DEBUG: inode 15 - flag=1, i_inline_off=164, has_inline=1, extents_flag=1 This is an invalid combination since an inode should have either: - INLINE_DATA: data stored directly in the inode - EXTENTS: data stored in extent-mapped blocks Having both flags causes ext4_has_inline_data() to return true, skipping extent tree validation in __ext4_iget(). The unvalidated out-of-order extents then trigger a BUG_ON in ext4_es_cache_extent() due to integer underflow when calculating hole sizes. Fix this by detecting this invalid flag combination early in ext4_iget() and rejecting the corrupted inode.
CVE-2025-40166 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Check GuC running state before deregistering exec queue In normal operation, a registered exec queue is disabled and deregistered through the GuC, and freed only after the GuC confirms completion. However, if the driver is forced to unbind while the exec queue is still running, the user may call exec_destroy() after the GuC has already been stopped and CT communication disabled. In this case, the driver cannot receive a response from the GuC, preventing proper cleanup of exec queue resources. Fix this by directly releasing the resources when GuC is not running. Here is the failure dmesg log: " [ 468.089581] ---[ end trace 0000000000000000 ]--- [ 468.089608] pci 0000:03:00.0: [drm] *ERROR* GT0: GUC ID manager unclean (1/65535) [ 468.090558] pci 0000:03:00.0: [drm] GT0: total 65535 [ 468.090562] pci 0000:03:00.0: [drm] GT0: used 1 [ 468.090564] pci 0000:03:00.0: [drm] GT0: range 1..1 (1) [ 468.092716] ------------[ cut here ]------------ [ 468.092719] WARNING: CPU: 14 PID: 4775 at drivers/gpu/drm/xe/xe_ttm_vram_mgr.c:298 ttm_vram_mgr_fini+0xf8/0x130 [xe] " v2: use xe_uc_fw_is_running() instead of xe_guc_ct_enabled(). As CT may go down and come back during VF migration. (cherry picked from commit 9b42321a02c50a12b2beb6ae9469606257fbecea)
CVE-2025-40165 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: nxp: imx8-isi: m2m: Fix streaming cleanup on release If streamon/streamoff calls are imbalanced, such as when exiting an application with Ctrl+C when streaming, the m2m usage_count will never reach zero and the ISI channel won't be freed. Besides from that, if the input line width is more than 2K, it will trigger a WARN_ON(): [ 59.222120] ------------[ cut here ]------------ [ 59.226758] WARNING: drivers/media/platform/nxp/imx8-isi/imx8-isi-hw.c:631 at mxc_isi_channel_chain+0xa4/0x120, CPU#4: v4l2-ctl/654 [ 59.238569] Modules linked in: ap1302 [ 59.242231] CPU: 4 UID: 0 PID: 654 Comm: v4l2-ctl Not tainted 6.16.0-rc4-next-20250704-06511-gff0e002d480a-dirty #258 PREEMPT [ 59.253597] Hardware name: NXP i.MX95 15X15 board (DT) [ 59.258720] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 59.265669] pc : mxc_isi_channel_chain+0xa4/0x120 [ 59.270358] lr : mxc_isi_channel_chain+0x44/0x120 [ 59.275047] sp : ffff8000848c3b40 [ 59.278348] x29: ffff8000848c3b40 x28: ffff0000859b4c98 x27: ffff800081939f00 [ 59.285472] x26: 000000000000000a x25: ffff0000859b4cb8 x24: 0000000000000001 [ 59.292597] x23: ffff0000816f4760 x22: ffff0000816f4258 x21: ffff000084ceb780 [ 59.299720] x20: ffff000084342ff8 x19: ffff000084340000 x18: 0000000000000000 [ 59.306845] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffdb369e1c [ 59.313969] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 59.321093] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 [ 59.328217] x8 : ffff8000848c3d48 x7 : ffff800081930b30 x6 : ffff800081930b30 [ 59.335340] x5 : ffff0000859b6000 x4 : ffff80008193ae80 x3 : ffff800081022420 [ 59.342464] x2 : ffff0000852f6900 x1 : 0000000000000001 x0 : ffff000084341000 [ 59.349590] Call trace: [ 59.352025] mxc_isi_channel_chain+0xa4/0x120 (P) [ 59.356722] mxc_isi_m2m_streamon+0x160/0x20c [ 59.361072] v4l_streamon+0x24/0x30 [ 59.364556] __video_do_ioctl+0x40c/0x4a0 [ 59.368560] video_usercopy+0x2bc/0x690 [ 59.372382] video_ioctl2+0x18/0x24 [ 59.375857] v4l2_ioctl+0x40/0x60 [ 59.379168] __arm64_sys_ioctl+0xac/0x104 [ 59.383172] invoke_syscall+0x48/0x104 [ 59.386916] el0_svc_common.constprop.0+0xc0/0xe0 [ 59.391613] do_el0_svc+0x1c/0x28 [ 59.394915] el0_svc+0x34/0xf4 [ 59.397966] el0t_64_sync_handler+0xa0/0xe4 [ 59.402143] el0t_64_sync+0x198/0x19c [ 59.405801] ---[ end trace 0000000000000000 ]--- Address this issue by moving the streaming preparation and cleanup to the vb2 .prepare_streaming() and .unprepare_streaming() operations. This also simplifies the driver by allowing direct usage of the v4l2_m2m_ioctl_streamon() and v4l2_m2m_ioctl_streamoff() helpers.
CVE-2025-40164 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usbnet: Fix using smp_processor_id() in preemptible code warnings Syzbot reported the following warning: BUG: using smp_processor_id() in preemptible [00000000] code: dhcpcd/2879 caller is usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331 CPU: 1 UID: 0 PID: 2879 Comm: dhcpcd Not tainted 6.15.0-rc4-syzkaller-00098-g615dca38c2ea #0 PREEMPT(voluntary) Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120 check_preemption_disabled+0xd0/0xe0 lib/smp_processor_id.c:49 usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331 usbnet_resume_rx+0x4b/0x170 drivers/net/usb/usbnet.c:708 usbnet_change_mtu+0x1be/0x220 drivers/net/usb/usbnet.c:417 __dev_set_mtu net/core/dev.c:9443 [inline] netif_set_mtu_ext+0x369/0x5c0 net/core/dev.c:9496 netif_set_mtu+0xb0/0x160 net/core/dev.c:9520 dev_set_mtu+0xae/0x170 net/core/dev_api.c:247 dev_ifsioc+0xa31/0x18d0 net/core/dev_ioctl.c:572 dev_ioctl+0x223/0x10e0 net/core/dev_ioctl.c:821 sock_do_ioctl+0x19d/0x280 net/socket.c:1204 sock_ioctl+0x42f/0x6a0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f For historical and portability reasons, the netif_rx() is usually run in the softirq or interrupt context, this commit therefore add local_bh_disable/enable() protection in the usbnet_resume_rx().
CVE-2025-40163 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: Stop dl_server before CPU goes offline IBM CI tool reported kernel warning[1] when running a CPU removal operation through drmgr[2]. i.e "drmgr -c cpu -r -q 1" WARNING: CPU: 0 PID: 0 at kernel/sched/cpudeadline.c:219 cpudl_set+0x58/0x170 NIP [c0000000002b6ed8] cpudl_set+0x58/0x170 LR [c0000000002b7cb8] dl_server_timer+0x168/0x2a0 Call Trace: [c000000002c2f8c0] init_stack+0x78c0/0x8000 (unreliable) [c0000000002b7cb8] dl_server_timer+0x168/0x2a0 [c00000000034df84] __hrtimer_run_queues+0x1a4/0x390 [c00000000034f624] hrtimer_interrupt+0x124/0x300 [c00000000002a230] timer_interrupt+0x140/0x320 Git bisects to: commit 4ae8d9aa9f9d ("sched/deadline: Fix dl_server getting stuck") This happens since: - dl_server hrtimer gets enqueued close to cpu offline, when kthread_park enqueues a fair task. - CPU goes offline and drmgr removes it from cpu_present_mask. - hrtimer fires and warning is hit. Fix it by stopping the dl_server before CPU is marked dead. [1]: https://lore.kernel.org/all/8218e149-7718-4432-9312-f97297c352b9@linux.ibm.com/ [2]: https://github.com/ibm-power-utilities/powerpc-utils/tree/next/src/drmgr [sshegde: wrote the changelog and tested it]
CVE-2025-40162 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: amd/sdw_utils: avoid NULL deref when devm_kasprintf() fails devm_kasprintf() may return NULL on memory allocation failure, but the debug message prints cpus->dai_name before checking it. Move the dev_dbg() call after the NULL check to prevent potential NULL pointer dereference.
CVE-2025-40161 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mailbox: zynqmp-ipi: Fix SGI cleanup on unbind The driver incorrectly determines SGI vs SPI interrupts by checking IRQ number < 16, which fails with dynamic IRQ allocation. During unbind, this causes improper SGI cleanup leading to kernel crash. Add explicit irq_type field to pdata for reliable identification of SGI interrupts (type-2) and only clean up SGI resources when appropriate.
CVE-2025-40160 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xen/events: Return -EEXIST for bound VIRQs Change find_virq() to return -EEXIST when a VIRQ is bound to a different CPU than the one passed in. With that, remove the BUG_ON() from bind_virq_to_irq() to propogate the error upwards. Some VIRQs are per-cpu, but others are per-domain or global. Those must be bound to CPU0 and can then migrate elsewhere. The lookup for per-domain and global will probably fail when migrated off CPU 0, especially when the current CPU is tracked. This now returns -EEXIST instead of BUG_ON(). A second call to bind a per-domain or global VIRQ is not expected, but make it non-fatal to avoid trying to look up the irq, since we don't know which per_cpu(virq_to_irq) it will be in.