Total 319334 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-38593 1 Linux 1 Linux Kernel 2025-11-24 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix double free in 'hci_discovery_filter_clear()' Function 'hci_discovery_filter_clear()' frees 'uuids' array and then sets it to NULL. There is a tiny chance of the following race: 'hci_cmd_sync_work()' 'update_passive_scan_sync()' 'hci_update_passive_scan_sync()' 'hci_discovery_filter_clear()' kfree(uuids); <-------------------------preempted--------------------------------> 'start_service_discovery()' 'hci_discovery_filter_clear()' kfree(uuids); // DOUBLE FREE <-------------------------preempted--------------------------------> uuids = NULL; To fix it let's add locking around 'kfree()' call and NULL pointer assignment. Otherwise the following backtrace fires: [ ] ------------[ cut here ]------------ [ ] kernel BUG at mm/slub.c:547! [ ] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP [ ] CPU: 3 UID: 0 PID: 246 Comm: bluetoothd Tainted: G O 6.12.19-kernel #1 [ ] Tainted: [O]=OOT_MODULE [ ] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ ] pc : __slab_free+0xf8/0x348 [ ] lr : __slab_free+0x48/0x348 ... [ ] Call trace: [ ] __slab_free+0xf8/0x348 [ ] kfree+0x164/0x27c [ ] start_service_discovery+0x1d0/0x2c0 [ ] hci_sock_sendmsg+0x518/0x924 [ ] __sock_sendmsg+0x54/0x60 [ ] sock_write_iter+0x98/0xf8 [ ] do_iter_readv_writev+0xe4/0x1c8 [ ] vfs_writev+0x128/0x2b0 [ ] do_writev+0xfc/0x118 [ ] __arm64_sys_writev+0x20/0x2c [ ] invoke_syscall+0x68/0xf0 [ ] el0_svc_common.constprop.0+0x40/0xe0 [ ] do_el0_svc+0x1c/0x28 [ ] el0_svc+0x30/0xd0 [ ] el0t_64_sync_handler+0x100/0x12c [ ] el0t_64_sync+0x194/0x198 [ ] Code: 8b0002e6 eb17031f 54fffbe1 d503201f (d4210000) [ ] ---[ end trace 0000000000000000 ]---
CVE-2025-38057 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: espintcp: fix skb leaks A few error paths are missing a kfree_skb.
CVE-2025-23155 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Fix accessing freed irq affinity_hint In stmmac_request_irq_multi_msi(), a pointer to the stack variable cpu_mask is passed to irq_set_affinity_hint(). This value is stored in irq_desc->affinity_hint, but once stmmac_request_irq_multi_msi() returns, the pointer becomes dangling. The affinity_hint is exposed via procfs with S_IRUGO permissions, allowing any unprivileged process to read it. Accessing this stale pointer can lead to: - a kernel oops or panic if the referenced memory has been released and unmapped, or - leakage of kernel data into userspace if the memory is re-used for other purposes. All platforms that use stmmac with PCI MSI (Intel, Loongson, etc) are affected.
CVE-2025-23129 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Clear affinity hint before calling ath11k_pcic_free_irq() in error path If a shared IRQ is used by the driver due to platform limitation, then the IRQ affinity hint is set right after the allocation of IRQ vectors in ath11k_pci_alloc_msi(). This does no harm unless one of the functions requesting the IRQ fails and attempt to free the IRQ. This results in the below warning: WARNING: CPU: 7 PID: 349 at kernel/irq/manage.c:1929 free_irq+0x278/0x29c Call trace: free_irq+0x278/0x29c ath11k_pcic_free_irq+0x70/0x10c [ath11k] ath11k_pci_probe+0x800/0x820 [ath11k_pci] local_pci_probe+0x40/0xbc The warning is due to not clearing the affinity hint before freeing the IRQs. So to fix this issue, clear the IRQ affinity hint before calling ath11k_pcic_free_irq() in the error path. The affinity will be cleared once again further down the error path due to code organization, but that does no harm. Tested-on: QCA6390 hw2.0 PCI WLAN.HST.1.0.1-05266-QCAHSTSWPLZ_V2_TO_X86-1
CVE-2025-22121 1 Linux 1 Linux Kernel 2025-11-24 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix out-of-bound read in ext4_xattr_inode_dec_ref_all() There's issue as follows: BUG: KASAN: use-after-free in ext4_xattr_inode_dec_ref_all+0x6ff/0x790 Read of size 4 at addr ffff88807b003000 by task syz-executor.0/15172 CPU: 3 PID: 15172 Comm: syz-executor.0 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0xbe/0xfd lib/dump_stack.c:123 print_address_description.constprop.0+0x1e/0x280 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 ext4_xattr_inode_dec_ref_all+0x6ff/0x790 fs/ext4/xattr.c:1137 ext4_xattr_delete_inode+0x4c7/0xda0 fs/ext4/xattr.c:2896 ext4_evict_inode+0xb3b/0x1670 fs/ext4/inode.c:323 evict+0x39f/0x880 fs/inode.c:622 iput_final fs/inode.c:1746 [inline] iput fs/inode.c:1772 [inline] iput+0x525/0x6c0 fs/inode.c:1758 ext4_orphan_cleanup fs/ext4/super.c:3298 [inline] ext4_fill_super+0x8c57/0xba40 fs/ext4/super.c:5300 mount_bdev+0x355/0x410 fs/super.c:1446 legacy_get_tree+0xfe/0x220 fs/fs_context.c:611 vfs_get_tree+0x8d/0x2f0 fs/super.c:1576 do_new_mount fs/namespace.c:2983 [inline] path_mount+0x119a/0x1ad0 fs/namespace.c:3316 do_mount+0xfc/0x110 fs/namespace.c:3329 __do_sys_mount fs/namespace.c:3540 [inline] __se_sys_mount+0x219/0x2e0 fs/namespace.c:3514 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Memory state around the buggy address: ffff88807b002f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88807b002f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff88807b003000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88807b003080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88807b003100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff Above issue happens as ext4_xattr_delete_inode() isn't check xattr is valid if xattr is in inode. To solve above issue call xattr_check_inode() check if xattr if valid in inode. In fact, we can directly verify in ext4_iget_extra_inode(), so that there is no divergent verification.
CVE-2025-22107 1 Linux 1 Linux Kernel 2025-11-24 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: dsa: sja1105: fix kasan out-of-bounds warning in sja1105_table_delete_entry() There are actually 2 problems: - deleting the last element doesn't require the memmove of elements [i + 1, end) over it. Actually, element i+1 is out of bounds. - The memmove itself should move size - i - 1 elements, because the last element is out of bounds. The out-of-bounds element still remains out of bounds after being accessed, so the problem is only that we touch it, not that it becomes in active use. But I suppose it can lead to issues if the out-of-bounds element is part of an unmapped page.
CVE-2025-22103 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix NULL pointer dereference in l3mdev_l3_rcv When delete l3s ipvlan: ip link del link eth0 ipvlan1 type ipvlan mode l3s This may cause a null pointer dereference: Call trace: ip_rcv_finish+0x48/0xd0 ip_rcv+0x5c/0x100 __netif_receive_skb_one_core+0x64/0xb0 __netif_receive_skb+0x20/0x80 process_backlog+0xb4/0x204 napi_poll+0xe8/0x294 net_rx_action+0xd8/0x22c __do_softirq+0x12c/0x354 This is because l3mdev_l3_rcv() visit dev->l3mdev_ops after ipvlan_l3s_unregister() assign the dev->l3mdev_ops to NULL. The process like this: (CPU1) | (CPU2) l3mdev_l3_rcv() | check dev->priv_flags: | master = skb->dev; | | | ipvlan_l3s_unregister() | set dev->priv_flags | dev->l3mdev_ops = NULL; | visit master->l3mdev_ops | To avoid this by do not set dev->l3mdev_ops when unregister l3s ipvlan.
CVE-2025-21868 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: allow small head cache usage with large MAX_SKB_FRAGS values Sabrina reported the following splat: WARNING: CPU: 0 PID: 1 at net/core/dev.c:6935 netif_napi_add_weight_locked+0x8f2/0xba0 Modules linked in: CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.14.0-rc1-net-00092-g011b03359038 #996 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 RIP: 0010:netif_napi_add_weight_locked+0x8f2/0xba0 Code: e8 c3 e6 6a fe 48 83 c4 28 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc c7 44 24 10 ff ff ff ff e9 8f fb ff ff e8 9e e6 6a fe <0f> 0b e9 d3 fe ff ff e8 92 e6 6a fe 48 8b 04 24 be ff ff ff ff 48 RSP: 0000:ffffc9000001fc60 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff88806ce48128 RCX: 1ffff11001664b9e RDX: ffff888008f00040 RSI: ffffffff8317ca42 RDI: ffff88800b325cb6 RBP: ffff88800b325c40 R08: 0000000000000001 R09: ffffed100167502c R10: ffff88800b3a8163 R11: 0000000000000000 R12: ffff88800ac1c168 R13: ffff88800ac1c168 R14: ffff88800ac1c168 R15: 0000000000000007 FS: 0000000000000000(0000) GS:ffff88806ce00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff888008201000 CR3: 0000000004c94001 CR4: 0000000000370ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> gro_cells_init+0x1ba/0x270 xfrm_input_init+0x4b/0x2a0 xfrm_init+0x38/0x50 ip_rt_init+0x2d7/0x350 ip_init+0xf/0x20 inet_init+0x406/0x590 do_one_initcall+0x9d/0x2e0 do_initcalls+0x23b/0x280 kernel_init_freeable+0x445/0x490 kernel_init+0x20/0x1d0 ret_from_fork+0x46/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> irq event stamp: 584330 hardirqs last enabled at (584338): [<ffffffff8168bf87>] __up_console_sem+0x77/0xb0 hardirqs last disabled at (584345): [<ffffffff8168bf6c>] __up_console_sem+0x5c/0xb0 softirqs last enabled at (583242): [<ffffffff833ee96d>] netlink_insert+0x14d/0x470 softirqs last disabled at (583754): [<ffffffff8317c8cd>] netif_napi_add_weight_locked+0x77d/0xba0 on kernel built with MAX_SKB_FRAGS=45, where SKB_WITH_OVERHEAD(1024) is smaller than GRO_MAX_HEAD. Such built additionally contains the revert of the single page frag cache so that napi_get_frags() ends up using the page frag allocator, triggering the splat. Note that the underlying issue is independent from the mentioned revert; address it ensuring that the small head cache will fit either TCP and GRO allocation and updating napi_alloc_skb() and __netdev_alloc_skb() to select kmalloc() usage for any allocation fitting such cache.
CVE-2024-49998 1 Linux 1 Linux Kernel 2025-11-24 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).
CVE-2024-41033 1 Linux 1 Linux Kernel 2025-11-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cachestat: do not flush stats in recency check syzbot detects that cachestat() is flushing stats, which can sleep, in its RCU read section (see [1]). This is done in the workingset_test_recent() step (which checks if the folio's eviction is recent). Move the stat flushing step to before the RCU read section of cachestat, and skip stat flushing during the recency check. [1]: https://lore.kernel.org/cgroups/000000000000f71227061bdf97e0@google.com/
CVE-2025-2240 1 Redhat 9 Apache Camel Spring Boot, Apicurio Registry, Camel Quarkus and 6 more 2025-11-24 7.5 High
A flaw was found in Smallrye, where smallrye-fault-tolerance is vulnerable to an out-of-memory (OOM) issue. This vulnerability is externally triggered when calling the metrics URI. Every call creates a new object within meterMap and may lead to a denial of service (DoS) issue.
CVE-2025-65031 1 Rallly 1 Rallly 2025-11-24 6.5 Medium
Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an improper authorization flaw in the comment creation endpoint allows authenticated users to impersonate any other user by altering the authorName field in the API request. This enables attackers to post comments under arbitrary usernames, including privileged ones such as administrators, potentially misleading other users and enabling phishing or social engineering attacks. This issue has been patched in version 4.5.4.
CVE-2025-65028 1 Rallly 1 Rallly 2025-11-24 6.5 Medium
Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an insecure direct object reference (IDOR) vulnerability allows any authenticated user to modify other participants’ votes in polls without authorization. The backend relies solely on the participantId parameter to identify which votes to update, without verifying ownership or poll permissions. This allows an attacker to alter poll results in their favor, directly compromising data integrity. This issue has been patched in version 4.5.4.
CVE-2025-56526 1 Cinnamon 1 Kotaemon 2025-11-24 6.1 Medium
Cross site scripting (XSS) vulnerability in Kotaemon 0.11.0 allowing attackers to execute arbitrary code via a crafted PDF.
CVE-2025-64984 3 Apple, Kaspersky, Linux 5 Macos, Endpoint Security, Industrial Cybersecurity and 2 more 2025-11-24 6.1 Medium
Kaspersky has fixed a security issue in Kaspersky Endpoint Security for Linux (any version with anti-virus databases prior to 18.11.2025), Kaspersky Industrial CyberSecurity for Linux Nodes (any version with anti-virus databases prior to 18.11.2025), and Kaspersky Endpoint Security for Mac (12.0.0.325, 12.1.0.553, and 12.2.0.694 with anti-virus databases prior to 18.11.2025) that could have allowed a reflected XSS attack to be carried out by an attacker using phishing techniques.
CVE-2025-63206 1 Dasan 1 Ds2924 2025-11-24 9.8 Critical
An authentication bypass issue was discovered in Dasan Switch DS2924 web based interface, firmware versions 1.01.18 and 1.02.00, allowing attackers to gain escalated privileges via storing crafted cookies in the web browser.
CVE-2025-13433 2 Microsoft, Muse 2 Windows, Musehub 2025-11-24 7 High
A security flaw has been discovered in Muse Group MuseHub 2.1.0.1567. The affected element is an unknown function of the file C:\Program Files\WindowsApps\Muse.MuseHub_2.1.0.1567_x64__rb9pth70m6nz6\Muse.Updater.exe of the component Windows Service. The manipulation results in unquoted search path. The attack is only possible with local access. A high complexity level is associated with this attack. The exploitability is described as difficult. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-13425 1 Google 1 Osv-scalibr 2025-11-24 3.3 Low
A bug in the filesystem traversal fallback path causes fs/diriterate/diriterate.go:Next() to overindex an empty slice when ReadDir returns nil for an empty directory, resulting in a panic (index out of range) and an application crash (denial of service) in OSV-SCALIBR.
CVE-2025-25613 1 Fs 1 S3150-8t2f 2025-11-24 7.5 High
FS Inc S3150-8T2F 8-Port Gigabit Ethernet L2+ Switch, 8 x Gigabit RJ45, with 2 x 1Gb SFP, Fanless. All versions before 2.2.0D Build 135103 were discovered to transmit cookies for their web based administrative application containing usernames and passwords. These were transmitted in cleartext using simple base64 encoding during every POST request made to the server.
CVE-2025-63371 1 Onecommander 1 Onecommander 2025-11-24 7.5 High
Milos Paripovic OneCommander 3.102.0.0 is vulnerable to Directory Traversal. The vulnerability resides in the ZIP file processing component, specifically in the functionality responsible for extracting and handling ZIP archive contents.