Total 333389 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2026-2144 2 Katsushi-kawamori, Wordpress 2 Magic Login Mail Or Qr Code, Wordpress 2026-02-18 8.1 High
The Magic Login Mail or QR Code plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 2.05. This is due to the plugin storing the magic login QR code image with a predictable, static filename (QR_Code.png) in the publicly accessible WordPress uploads directory during the email sending process. The file is only deleted after wp_mail() completes, creating an exploitable race condition window. This makes it possible for unauthenticated attackers to trigger a login link request for any user, including administrators, and then exploit the race condition between QR code file creation and deletion to obtain the login URL encoded in the QR code, thereby gaining unauthorized access to the targeted user's account.
CVE-2026-1792 2 Owencutajar, Wordpress 2 Geo Widget, Wordpress 2026-02-18 6.1 Medium
The Geo Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the URL path in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-23113 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/io-wq: check IO_WQ_BIT_EXIT inside work run loop Currently this is checked before running the pending work. Normally this is quite fine, as work items either end up blocking (which will create a new worker for other items), or they complete fairly quickly. But syzbot reports an issue where io-wq takes seemingly forever to exit, and with a bit of debugging, this turns out to be because it queues a bunch of big (2GB - 4096b) reads with a /dev/msr* file. Since this file type doesn't support ->read_iter(), loop_rw_iter() ends up handling them. Each read returns 16MB of data read, which takes 20 (!!) seconds. With a bunch of these pending, processing the whole chain can take a long time. Easily longer than the syzbot uninterruptible sleep timeout of 140 seconds. This then triggers a complaint off the io-wq exit path: INFO: task syz.4.135:6326 blocked for more than 143 seconds. Not tainted syzkaller #0 Blocked by coredump. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz.4.135 state:D stack:26824 pid:6326 tgid:6324 ppid:5957 task_flags:0x400548 flags:0x00080000 Call Trace: <TASK> context_switch kernel/sched/core.c:5256 [inline] __schedule+0x1139/0x6150 kernel/sched/core.c:6863 __schedule_loop kernel/sched/core.c:6945 [inline] schedule+0xe7/0x3a0 kernel/sched/core.c:6960 schedule_timeout+0x257/0x290 kernel/time/sleep_timeout.c:75 do_wait_for_common kernel/sched/completion.c:100 [inline] __wait_for_common+0x2fc/0x4e0 kernel/sched/completion.c:121 io_wq_exit_workers io_uring/io-wq.c:1328 [inline] io_wq_put_and_exit+0x271/0x8a0 io_uring/io-wq.c:1356 io_uring_clean_tctx+0x10d/0x190 io_uring/tctx.c:203 io_uring_cancel_generic+0x69c/0x9a0 io_uring/cancel.c:651 io_uring_files_cancel include/linux/io_uring.h:19 [inline] do_exit+0x2ce/0x2bd0 kernel/exit.c:911 do_group_exit+0xd3/0x2a0 kernel/exit.c:1112 get_signal+0x2671/0x26d0 kernel/signal.c:3034 arch_do_signal_or_restart+0x8f/0x7e0 arch/x86/kernel/signal.c:337 __exit_to_user_mode_loop kernel/entry/common.c:41 [inline] exit_to_user_mode_loop+0x8c/0x540 kernel/entry/common.c:75 __exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline] syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline] do_syscall_64+0x4ee/0xf80 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa02738f749 RSP: 002b:00007fa0281ae0e8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca RAX: fffffffffffffe00 RBX: 00007fa0275e6098 RCX: 00007fa02738f749 RDX: 0000000000000000 RSI: 0000000000000080 RDI: 00007fa0275e6098 RBP: 00007fa0275e6090 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fa0275e6128 R14: 00007fff14e4fcb0 R15: 00007fff14e4fd98 There's really nothing wrong here, outside of processing these reads will take a LONG time. However, we can speed up the exit by checking the IO_WQ_BIT_EXIT inside the io_worker_handle_work() loop, as syzbot will exit the ring after queueing up all of these reads. Then once the first item is processed, io-wq will simply cancel the rest. That should avoid syzbot running into this complaint again.
CVE-2026-23123 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: interconnect: debugfs: initialize src_node and dst_node to empty strings The debugfs_create_str() API assumes that the string pointer is either NULL or points to valid kmalloc() memory. Leaving the pointer uninitialized can cause problems. Initialize src_node and dst_node to empty strings before creating the debugfs entries to guarantee that reads and writes are safe.
CVE-2026-23127 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: perf: Fix refcount warning on event->mmap_count increment When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the following warning is triggered: refcount_t: addition on 0; use-after-free. WARNING: lib/refcount.c:25 PoC: struct perf_event_attr attr = {0}; int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd, PERF_FLAG_FD_OUTPUT); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0); This occurs when creating a group member event with the flag PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing the event triggers the warning. Since the event has copied the output_event in perf_event_set_output(), event->rb is set. As a result, perf_mmap_rb() calls refcount_inc(&event->mmap_count) when event->mmap_count = 0. Disallow the case when event->mmap_count = 0. This also prevents two events from updating the same user_page.
CVE-2026-23149 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: Do not allow userspace to trigger kernel warnings in drm_gem_change_handle_ioctl() Since GEM bo handles are u32 in the uapi and the internal implementation uses idr_alloc() which uses int ranges, passing a new handle larger than INT_MAX trivially triggers a kernel warning: idr_alloc(): ... if (WARN_ON_ONCE(start < 0)) return -EINVAL; ... Fix it by rejecting new handles above INT_MAX and at the same time make the end limit calculation more obvious by moving into int domain.
CVE-2026-23150 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: llcp: Fix memleak in nfc_llcp_send_ui_frame(). syzbot reported various memory leaks related to NFC, struct nfc_llcp_sock, sk_buff, nfc_dev, etc. [0] The leading log hinted that nfc_llcp_send_ui_frame() failed to allocate skb due to sock_error(sk) being -ENXIO. ENXIO is set by nfc_llcp_socket_release() when struct nfc_llcp_local is destroyed by local_cleanup(). The problem is that there is no synchronisation between nfc_llcp_send_ui_frame() and local_cleanup(), and skb could be put into local->tx_queue after it was purged in local_cleanup(): CPU1 CPU2 ---- ---- nfc_llcp_send_ui_frame() local_cleanup() |- do { ' |- pdu = nfc_alloc_send_skb(..., &err) | . | |- nfc_llcp_socket_release(local, false, ENXIO); | |- skb_queue_purge(&local->tx_queue); | | ' | |- skb_queue_tail(&local->tx_queue, pdu); | ... | |- pdu = nfc_alloc_send_skb(..., &err) | ^._________________________________.' local_cleanup() is called for struct nfc_llcp_local only after nfc_llcp_remove_local() unlinks it from llcp_devices. If we hold local->tx_queue.lock then, we can synchronise the thread and nfc_llcp_send_ui_frame(). Let's do that and check list_empty(&local->list) before queuing skb to local->tx_queue in nfc_llcp_send_ui_frame(). [0]: [ 56.074943][ T6096] llcp: nfc_llcp_send_ui_frame: Could not allocate PDU (error=-6) [ 64.318868][ T5813] kmemleak: 6 new suspected memory leaks (see /sys/kernel/debug/kmemleak) BUG: memory leak unreferenced object 0xffff8881272f6800 (size 1024): comm "syz.0.17", pid 6096, jiffies 4294942766 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 27 00 03 40 00 00 00 00 00 00 00 00 00 00 00 00 '..@............ backtrace (crc da58d84d): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4979 [inline] slab_alloc_node mm/slub.c:5284 [inline] __do_kmalloc_node mm/slub.c:5645 [inline] __kmalloc_noprof+0x3e3/0x6b0 mm/slub.c:5658 kmalloc_noprof include/linux/slab.h:961 [inline] sk_prot_alloc+0x11a/0x1b0 net/core/sock.c:2239 sk_alloc+0x36/0x360 net/core/sock.c:2295 nfc_llcp_sock_alloc+0x37/0x130 net/nfc/llcp_sock.c:979 llcp_sock_create+0x71/0xd0 net/nfc/llcp_sock.c:1044 nfc_sock_create+0xc9/0xf0 net/nfc/af_nfc.c:31 __sock_create+0x1a9/0x340 net/socket.c:1605 sock_create net/socket.c:1663 [inline] __sys_socket_create net/socket.c:1700 [inline] __sys_socket+0xb9/0x1a0 net/socket.c:1747 __do_sys_socket net/socket.c:1761 [inline] __se_sys_socket net/socket.c:1759 [inline] __x64_sys_socket+0x1b/0x30 net/socket.c:1759 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f BUG: memory leak unreferenced object 0xffff88810fbd9800 (size 240): comm "syz.0.17", pid 6096, jiffies 4294942850 hex dump (first 32 bytes): 68 f0 ff 08 81 88 ff ff 68 f0 ff 08 81 88 ff ff h.......h....... 00 00 00 00 00 00 00 00 00 68 2f 27 81 88 ff ff .........h/'.... backtrace (crc 6cc652b1): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4979 [inline] slab_alloc_node mm/slub.c:5284 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5336 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/sk ---truncated---
CVE-2026-23155 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix error message Sinc commit 79a6d1bfe114 ("can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error") a failing resubmit URB will print an info message. In the case of a short read where netdev has not yet been assigned, initialize as NULL to avoid dereferencing an undefined value. Also report the error value of the failed resubmit.
CVE-2026-23156 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: efivarfs: fix error propagation in efivar_entry_get() efivar_entry_get() always returns success even if the underlying __efivar_entry_get() fails, masking errors. This may result in uninitialized heap memory being copied to userspace in the efivarfs_file_read() path. Fix it by returning the error from __efivar_entry_get().
CVE-2026-23167 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix race between rfkill and nci_unregister_device(). syzbot reported the splat below [0] without a repro. It indicates that struct nci_dev.cmd_wq had been destroyed before nci_close_device() was called via rfkill. nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which (I think) was called from virtual_ncidev_close() when syzbot close()d an fd of virtual_ncidev. The problem is that nci_unregister_device() destroys nci_dev.cmd_wq first and then calls nfc_unregister_device(), which removes the device from rfkill by rfkill_unregister(). So, the device is still visible via rfkill even after nci_dev.cmd_wq is destroyed. Let's unregister the device from rfkill first in nci_unregister_device(). Note that we cannot call nfc_unregister_device() before nci_close_device() because 1) nfc_unregister_device() calls device_del() which frees all memory allocated by devm_kzalloc() and linked to ndev->conn_info_list 2) nci_rx_work() could try to queue nci_conn_info to ndev->conn_info_list which could be leaked Thus, nfc_unregister_device() is split into two functions so we can remove rfkill interfaces only before nci_close_device(). [0]: DEBUG_LOCKS_WARN_ON(1) WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349 Modules linked in: CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026 RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline] RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline] RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187 Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f RSP: 0018:ffffc9000c767680 EFLAGS: 00010046 RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000 RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0 RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4 R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2 R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30 FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0 Call Trace: <TASK> lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868 touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940 __flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982 nci_close_device+0x302/0x630 net/nfc/nci/core.c:567 nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639 nfc_dev_down+0x152/0x290 net/nfc/core.c:161 nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179 rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346 rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301 vfs_write+0x29a/0xb90 fs/read_write.c:684 ksys_write+0x150/0x270 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa59b39acb9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9 RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007 RBP: 00007fa59b408bf7 R08: ---truncated---
CVE-2026-23170 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/imx/tve: fix probe device leak Make sure to drop the reference taken to the DDC device during probe on probe failure (e.g. probe deferral) and on driver unbind.
CVE-2026-23133 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses.
CVE-2026-23157 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not strictly require dirty metadata threshold for metadata writepages [BUG] There is an internal report that over 1000 processes are waiting at the io_schedule_timeout() of balance_dirty_pages(), causing a system hang and trigger a kernel coredump. The kernel is v6.4 kernel based, but the root problem still applies to any upstream kernel before v6.18. [CAUSE] From Jan Kara for his wisdom on the dirty page balance behavior first. This cgroup dirty limit was what was actually playing the role here because the cgroup had only a small amount of memory and so the dirty limit for it was something like 16MB. Dirty throttling is responsible for enforcing that nobody can dirty (significantly) more dirty memory than there's dirty limit. Thus when a task is dirtying pages it periodically enters into balance_dirty_pages() and we let it sleep there to slow down the dirtying. When the system is over dirty limit already (either globally or within a cgroup of the running task), we will not let the task exit from balance_dirty_pages() until the number of dirty pages drops below the limit. So in this particular case, as I already mentioned, there was a cgroup with relatively small amount of memory and as a result with dirty limit set at 16MB. A task from that cgroup has dirtied about 28MB worth of pages in btrfs btree inode and these were practically the only dirty pages in that cgroup. So that means the only way to reduce the dirty pages of that cgroup is to writeback the dirty pages of btrfs btree inode, and only after that those processes can exit balance_dirty_pages(). Now back to the btrfs part, btree_writepages() is responsible for writing back dirty btree inode pages. The problem here is, there is a btrfs internal threshold that if the btree inode's dirty bytes are below the 32M threshold, it will not do any writeback. This behavior is to batch as much metadata as possible so we won't write back those tree blocks and then later re-COW them again for another modification. This internal 32MiB is higher than the existing dirty page size (28MiB), meaning no writeback will happen, causing a deadlock between btrfs and cgroup: - Btrfs doesn't want to write back btree inode until more dirty pages - Cgroup/MM doesn't want more dirty pages for btrfs btree inode Thus any process touching that btree inode is put into sleep until the number of dirty pages is reduced. Thanks Jan Kara a lot for the analysis of the root cause. [ENHANCEMENT] Since kernel commit b55102826d7d ("btrfs: set AS_KERNEL_FILE on the btree_inode"), btrfs btree inode pages will only be charged to the root cgroup which should have a much larger limit than btrfs' 32MiB threshold. So it should not affect newer kernels. But for all current LTS kernels, they are all affected by this problem, and backporting the whole AS_KERNEL_FILE may not be a good idea. Even for newer kernels I still think it's a good idea to get rid of the internal threshold at btree_writepages(), since for most cases cgroup/MM has a better view of full system memory usage than btrfs' fixed threshold. For internal callers using btrfs_btree_balance_dirty() since that function is already doing internal threshold check, we don't need to bother them. But for external callers of btree_writepages(), just respect their requests and write back whatever they want, ignoring the internal btrfs threshold to avoid such deadlock on btree inode dirty page balancing.
CVE-2026-23137 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: of: unittest: Fix memory leak in unittest_data_add() In unittest_data_add(), if of_resolve_phandles() fails, the allocated unittest_data is not freed, leading to a memory leak. Fix this by using scope-based cleanup helper __free(kfree) for automatic resource cleanup. This ensures unittest_data is automatically freed when it goes out of scope in error paths. For the success path, use retain_and_null_ptr() to transfer ownership of the memory to the device tree and prevent double freeing.
CVE-2026-23152 1 Linux 1 Linux Kernel 2026-02-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: correctly decode TTLM with default link map TID-To-Link Mapping (TTLM) elements do not contain any link mapping presence indicator if a default mapping is used and parsing needs to be skipped. Note that access points should not explicitly report an advertised TTLM with a default mapping as that is the implied mapping if the element is not included, this is even the case when switching back to the default mapping. However, mac80211 would incorrectly parse the frame and would also read one byte beyond the end of the element.
CVE-2026-23165 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sfc: fix deadlock in RSS config read Since cited commit, core locks the net_device's rss_lock when handling ethtool -x command, so driver's implementation should not lock it again. Remove the latter.
CVE-2026-23128 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64: Set __nocfi on swsusp_arch_resume() A DABT is reported[1] on an android based system when resume from hiberate. This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*() and does not have a CFI hash, but swsusp_arch_resume() will attempt to verify the CFI hash when calling a copy of swsusp_arch_suspend_exit(). Given that there's an existing requirement that the entrypoint to swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text section, we cannot fix this by marking swsusp_arch_suspend_exit() with SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in swsusp_arch_resume(). Mark swsusp_arch_resume() as __nocfi to disable the CFI check. [1] [ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc [ 22.991934][ T1] Mem abort info: [ 22.991934][ T1] ESR = 0x0000000096000007 [ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits [ 22.991934][ T1] SET = 0, FnV = 0 [ 22.991934][ T1] EA = 0, S1PTW = 0 [ 22.991934][ T1] FSC = 0x07: level 3 translation fault [ 22.991934][ T1] Data abort info: [ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 [ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper [ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP [ 22.991934][ T1] Dumping ftrace buffer: [ 22.991934][ T1] (ftrace buffer empty) [ 22.991934][ T1] Modules linked in: [ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419 [ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT) [ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344 [ 22.991934][ T1] sp : ffffffc08006b960 [ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000 [ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820 [ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000 [ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058 [ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004 [ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000 [ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000 [ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b [ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530 [ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000 [ 22.991934][ T1] Call trace: [ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] hibernation_restore+0x158/0x18c [ 22.991934][ T1] load_image_and_restore+0xb0/0xec [ 22.991934][ T1] software_resume+0xf4/0x19c [ 22.991934][ T1] software_resume_initcall+0x34/0x78 [ 22.991934][ T1] do_one_initcall+0xe8/0x370 [ 22.991934][ T1] do_initcall_level+0xc8/0x19c [ 22.991934][ T1] do_initcalls+0x70/0xc0 [ 22.991934][ T1] do_basic_setup+0x1c/0x28 [ 22.991934][ T1] kernel_init_freeable+0xe0/0x148 [ 22.991934][ T1] kernel_init+0x20/0x1a8 [ 22.991934][ T1] ret_from_fork+0x10/0x20 [ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110) [catalin.marinas@arm.com: commit log updated by Mark Rutland]
CVE-2026-1249 2 Sonaar, Wordpress 2 Mp3 Audio Player – Music Player, Podcast Player & Radio By Sonaar, Wordpress 2026-02-18 5 Medium
The MP3 Audio Player – Music Player, Podcast Player & Radio by Sonaar plugin for WordPress is vulnerable to Server-Side Request Forgery in versions 5.3 to 5.10 via the 'load_lyrics_ajax_callback' function. This makes it possible for authenticated attackers, with author level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services.
CVE-2026-1258 2 Getwpfunnels, Wordpress 2 Mail Mint – Newsletters, Email Marketing, Automation, Woocommerce Emails, Post Notification, And More, Wordpress 2026-02-18 4.9 Medium
The Mail Mint plugin for WordPress is vulnerable to blind SQL Injection via the 'forms', 'automation', 'email/templates', and 'contacts/import/tutorlms/map' API endpoints in all versions up to, and including, 1.19.2 . This is due to insufficient escaping on the user supplied 'order-by', 'order-type', and 'selectedCourses' parameters and lack of sufficient preparation on the existing SQL queries. This makes it possible for authenticated attackers, with administrator level access and above, to append additional SQL queries into already existing queries.
CVE-2026-1512 2 Wordpress, Wpdevteam 2 Wordpress, Essential Addons For Elementor – Popular Elementor Templates & Widgets 2026-02-18 6.4 Medium
The Essential Addons for Elementor – Popular Elementor Templates & Widgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's Info Box widget in all versions up to, and including, 6.5.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.