Filtered by vendor Linux Subscriptions
Total 15361 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-38537 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: phy: Don't register LEDs for genphy If a PHY has no driver, the genphy driver is probed/removed directly in phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the LEDs will be (un)registered when probing/removing the genphy driver. This could occur if the leds are for a non-generic driver that isn't loaded for whatever reason. Synchronously removing the PHY device in phy_detach leads to the following deadlock: rtnl_lock() ndo_close() ... phy_detach() phy_remove() phy_leds_unregister() led_classdev_unregister() led_trigger_set() netdev_trigger_deactivate() unregister_netdevice_notifier() rtnl_lock() There is a corresponding deadlock on the open/register side of things (and that one is reported by lockdep), but it requires a race while this one is deterministic. Generic PHYs do not support LEDs anyway, so don't bother registering them.
CVE-2022-50133 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: xhci_plat_remove: avoid NULL dereference Since commit 4736ebd7fcaff1eb8481c140ba494962847d6e0a ("usb: host: xhci-plat: omit shared hcd if either root hub has no ports") xhci->shared_hcd can be NULL, which causes the following Oops on reboot: [ 710.124450] systemd-shutdown[1]: Rebooting. [ 710.298861] xhci-hcd xhci-hcd.2.auto: remove, state 4 [ 710.304217] usb usb3: USB disconnect, device number 1 [ 710.317441] xhci-hcd xhci-hcd.2.auto: USB bus 3 deregistered [ 710.323280] xhci-hcd xhci-hcd.2.auto: remove, state 1 [ 710.328401] usb usb2: USB disconnect, device number 1 [ 710.333515] usb 2-3: USB disconnect, device number 2 [ 710.467649] xhci-hcd xhci-hcd.2.auto: USB bus 2 deregistered [ 710.475450] Unable to handle kernel NULL pointer dereference at virtual address 00000000000003b8 [ 710.484425] Mem abort info: [ 710.487265] ESR = 0x0000000096000004 [ 710.491060] EC = 0x25: DABT (current EL), IL = 32 bits [ 710.496427] SET = 0, FnV = 0 [ 710.499525] EA = 0, S1PTW = 0 [ 710.502716] FSC = 0x04: level 0 translation fault [ 710.507648] Data abort info: [ 710.510577] ISV = 0, ISS = 0x00000004 [ 710.514462] CM = 0, WnR = 0 [ 710.517480] user pgtable: 4k pages, 48-bit VAs, pgdp=00000008b0050000 [ 710.523976] [00000000000003b8] pgd=0000000000000000, p4d=0000000000000000 [ 710.530961] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 710.536551] Modules linked in: rfkill input_leds snd_soc_simple_card snd_soc_simple_card_utils snd_soc_nau8822 designware_i2s snd_soc_core dw_hdmi_ahb_audio snd_pcm_dmaengine arm_ccn panfrost ac97_bus gpu_sched snd_pcm at24 fuse configfs sdhci_of_dwcmshc sdhci_pltfm sdhci nvme led_class mmc_core nvme_core bt1_pvt polynomial tp_serio snd_seq_midi snd_seq_midi_event snd_seq snd_timer snd_rawmidi snd_seq_device snd soundcore efivarfs ipv6 [ 710.575286] CPU: 7 PID: 1 Comm: systemd-shutdow Not tainted 5.19.0-rc7-00043-gfd8619f4fd54 #1 [ 710.583822] Hardware name: T-Platforms TF307-MB/BM1BM1-A, BIOS 5.6 07/06/2022 [ 710.590972] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 710.597949] pc : usb_remove_hcd+0x34/0x1e4 [ 710.602067] lr : xhci_plat_remove+0x74/0x140 [ 710.606351] sp : ffff800009f3b7c0 [ 710.609674] x29: ffff800009f3b7c0 x28: ffff000800960040 x27: 0000000000000000 [ 710.616833] x26: ffff800008dc22a0 x25: 0000000000000000 x24: 0000000000000000 [ 710.623992] x23: 0000000000000000 x22: ffff000805465810 x21: ffff000805465800 [ 710.631149] x20: ffff000800f80000 x19: 0000000000000000 x18: ffffffffffffffff [ 710.638307] x17: ffff000805096000 x16: ffff00080633b800 x15: ffff000806537a1c [ 710.645465] x14: 0000000000000001 x13: 0000000000000000 x12: ffff00080378d6f0 [ 710.652621] x11: ffff00080041a900 x10: ffff800009b204e8 x9 : ffff8000088abaa4 [ 710.659779] x8 : ffff000800960040 x7 : ffff800009409000 x6 : 0000000000000001 [ 710.666936] x5 : ffff800009241000 x4 : ffff800009241440 x3 : 0000000000000000 [ 710.674094] x2 : ffff000800960040 x1 : ffff000800960040 x0 : 0000000000000000 [ 710.681251] Call trace: [ 710.683704] usb_remove_hcd+0x34/0x1e4 [ 710.687467] xhci_plat_remove+0x74/0x140 [ 710.691400] platform_remove+0x34/0x70 [ 710.695165] device_remove+0x54/0x90 [ 710.698753] device_release_driver_internal+0x200/0x270 [ 710.703992] device_release_driver+0x24/0x30 [ 710.708273] bus_remove_device+0xe0/0x16c [ 710.712293] device_del+0x178/0x390 [ 710.715797] platform_device_del.part.0+0x24/0x90 [ 710.720514] platform_device_unregister+0x30/0x50 [ 710.725232] dwc3_host_exit+0x20/0x30 [ 710.728907] dwc3_remove+0x174/0x1b0 [ 710.732494] platform_remove+0x34/0x70 [ 710.736254] device_remove+0x54/0x90 [ 710.739840] device_release_driver_internal+0x200/0x270 [ 710.745078] device_release_driver+0x24/0x30 [ 710.749359] bus_remove_device+0xe0/0x16c [ 710.753380] device_del+0x178/0x390 [ 710.756881] platform_device_del.part ---truncated---
CVE-2022-50134 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hfi1: fix potential memory leak in setup_base_ctxt() setup_base_ctxt() allocates a memory chunk for uctxt->groups with hfi1_alloc_ctxt_rcv_groups(). When init_user_ctxt() fails, uctxt->groups is not released, which will lead to a memory leak. We should release the uctxt->groups with hfi1_free_ctxt_rcv_groups() when init_user_ctxt() fails.
CVE-2022-50135 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix BUG: KASAN: null-ptr-deref in rxe_qp_do_cleanup The function rxe_create_qp calls rxe_qp_from_init. If some error occurs, the error handler of function rxe_qp_from_init will set both scq and rcq to NULL. Then rxe_create_qp calls rxe_put to handle qp. In the end, rxe_qp_do_cleanup is called by rxe_put. rxe_qp_do_cleanup directly accesses scq and rcq before checking them. This will cause null-ptr-deref error. The call graph is as below: rxe_create_qp { ... rxe_qp_from_init { ... err1: ... qp->rcq = NULL; <---rcq is set to NULL qp->scq = NULL; <---scq is set to NULL ... } qp_init: rxe_put{ ... rxe_qp_do_cleanup { ... atomic_dec(&qp->scq->num_wq); <--- scq is accessed ... atomic_dec(&qp->rcq->num_wq); <--- rcq is accessed } }
CVE-2022-50136 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix duplicated reported IW_CM_EVENT_CONNECT_REPLY event If siw_recv_mpa_rr returns -EAGAIN, it means that the MPA reply hasn't been received completely, and should not report IW_CM_EVENT_CONNECT_REPLY in this case. This may trigger a call trace in iw_cm. A simple way to trigger this: server: ib_send_lat client: ib_send_lat -R <server_ip> The call trace looks like this: kernel BUG at drivers/infiniband/core/iwcm.c:894! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <...> Workqueue: iw_cm_wq cm_work_handler [iw_cm] Call Trace: <TASK> cm_work_handler+0x1dd/0x370 [iw_cm] process_one_work+0x1e2/0x3b0 worker_thread+0x49/0x2e0 ? rescuer_thread+0x370/0x370 kthread+0xe5/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK>
CVE-2022-50137 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix a window for use-after-free During a destroy CQ an interrupt may cause processing of a CQE after CQ resources are freed by irdma_cq_free_rsrc(). Fix this by moving the call to irdma_cq_free_rsrc() after the irdma_sc_cleanup_ceqes(), which is called under the cq_lock.
CVE-2025-38556 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: Harden s32ton() against conversion to 0 bits Testing by the syzbot fuzzer showed that the HID core gets a shift-out-of-bounds exception when it tries to convert a 32-bit quantity to a 0-bit quantity. Ideally this should never occur, but there are buggy devices and some might have a report field with size set to zero; we shouldn't reject the report or the device just because of that. Instead, harden the s32ton() routine so that it returns a reasonable result instead of crashing when it is called with the number of bits set to 0 -- the same as what snto32() does.
CVE-2025-38554 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped By inducing delays in the right places, Jann Horn created a reproducer for a hard to hit UAF issue that became possible after VMAs were allowed to be recycled by adding SLAB_TYPESAFE_BY_RCU to their cache. Race description is borrowed from Jann's discovery report: lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under rcu_read_lock(). At that point, the VMA may be concurrently freed, and it can be recycled by another process. vma_start_read() then increments the vma->vm_refcnt (if it is in an acceptable range), and if this succeeds, vma_start_read() can return a recycled VMA. In this scenario where the VMA has been recycled, lock_vma_under_rcu() will then detect the mismatching ->vm_mm pointer and drop the VMA through vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm. This is wrong: It implicitly assumes that the caller is keeping the VMA's mm alive, but in this scenario the caller has no relation to the VMA's mm, so the rcuwait_wake_up() can cause UAF. The diagram depicting the race: T1 T2 T3 == == == lock_vma_under_rcu mas_walk <VMA gets removed from mm> mmap <the same VMA is reallocated> vma_start_read __refcount_inc_not_zero_limited_acquire munmap __vma_enter_locked refcount_add_not_zero vma_end_read vma_refcount_put __refcount_dec_and_test rcuwait_wait_event <finish operation> rcuwait_wake_up [UAF] Note that rcuwait_wait_event() in T3 does not block because refcount was already dropped by T1. At this point T3 can exit and free the mm causing UAF in T1. To avoid this we move vma->vm_mm verification into vma_start_read() and grab vma->vm_mm to stabilize it before vma_refcount_put() operation. [surenb@google.com: v3]
CVE-2023-4515 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate command request size In commit 2b9b8f3b68ed ("ksmbd: validate command payload size"), except for SMB2_OPLOCK_BREAK_HE command, the request size of other commands is not checked, it's not expected. Fix it by add check for request size of other commands.
CVE-2023-4130 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix wrong next length validation of ea buffer in smb2_set_ea() There are multiple smb2_ea_info buffers in FILE_FULL_EA_INFORMATION request from client. ksmbd find next smb2_ea_info using ->NextEntryOffset of current smb2_ea_info. ksmbd need to validate buffer length Before accessing the next ea. ksmbd should check buffer length using buf_len, not next variable. next is the start offset of current ea that got from previous ea.
CVE-2023-3867 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out of bounds read in smb2_sess_setup ksmbd does not consider the case of that smb2 session setup is in compound request. If this is the second payload of the compound, OOB read issue occurs while processing the first payload in the smb2_sess_setup().
CVE-2023-3866 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate session id and tree id in the compound request This patch validate session id and tree id in compound request. If first operation in the compound is SMB2 ECHO request, ksmbd bypass session and tree validation. So work->sess and work->tcon could be NULL. If secound request in the compound access work->sess or tcon, It cause NULL pointer dereferecing error.
CVE-2023-3865 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out-of-bound read in smb2_write ksmbd_smb2_check_message doesn't validate hdr->NextCommand. If ->NextCommand is bigger than Offset + Length of smb2 write, It will allow oversized smb2 write length. It will cause OOB read in smb2_write.
CVE-2023-32249 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: not allow guest user on multichannel This patch return STATUS_NOT_SUPPORTED if binding session is guest.
CVE-2025-38196 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: validate buffer count with offset for cloning syzbot reports that it can trigger a WARN_ON() for kmalloc() attempt that's too big: WARNING: CPU: 0 PID: 6488 at mm/slub.c:5024 __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 Modules linked in: CPU: 0 UID: 0 PID: 6488 Comm: syz-executor312 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 lr : __do_kmalloc_node mm/slub.c:-1 [inline] lr : __kvmalloc_node_noprof+0x3b4/0x640 mm/slub.c:5012 sp : ffff80009cfd7a90 x29: ffff80009cfd7ac0 x28: ffff0000dd52a120 x27: 0000000000412dc0 x26: 0000000000000178 x25: ffff7000139faf70 x24: 0000000000000000 x23: ffff800082f4cea8 x22: 00000000ffffffff x21: 000000010cd004a8 x20: ffff0000d75816c0 x19: ffff0000dd52a000 x18: 00000000ffffffff x17: ffff800092f39000 x16: ffff80008adbe9e4 x15: 0000000000000005 x14: 1ffff000139faf1c x13: 0000000000000000 x12: 0000000000000000 x11: ffff7000139faf21 x10: 0000000000000003 x9 : ffff80008f27b938 x8 : 0000000000000002 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 00000000ffffffff x4 : 0000000000400dc0 x3 : 0000000200000000 x2 : 000000010cd004a8 x1 : ffff80008b3ebc40 x0 : 0000000000000001 Call trace: __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 (P) kvmalloc_array_node_noprof include/linux/slab.h:1065 [inline] io_rsrc_data_alloc io_uring/rsrc.c:206 [inline] io_clone_buffers io_uring/rsrc.c:1178 [inline] io_register_clone_buffers+0x484/0xa14 io_uring/rsrc.c:1287 __io_uring_register io_uring/register.c:815 [inline] __do_sys_io_uring_register io_uring/register.c:926 [inline] __se_sys_io_uring_register io_uring/register.c:903 [inline] __arm64_sys_io_uring_register+0x42c/0xea8 io_uring/register.c:903 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 which is due to offset + buffer_count being too large. The registration code checks only the total count of buffers, but given that the indexing is an array, it should also check offset + count. That can't exceed IORING_MAX_REG_BUFFERS either, as there's no way to reach buffers beyond that limit. There's no issue with registrering a table this large, outside of the fact that it's pointless to register buffers that cannot be reached, and that it can trigger this kmalloc() warning for attempting an allocation that is too large.
CVE-2025-38199 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix memory leak due to multiple rx_stats allocation rx_stats for each arsta is allocated when adding a station. arsta->rx_stats will be freed when a station is removed. Redundant allocations are occurring when the same station is added multiple times. This causes ath12k_mac_station_add() to be called multiple times, and rx_stats is allocated each time. As a result there is memory leaks. Prevent multiple allocations of rx_stats when ath12k_mac_station_add() is called repeatedly by checking if rx_stats is already allocated before allocating again. Allocate arsta->rx_stats if arsta->rx_stats is NULL respectively. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
CVE-2025-38201 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: clamp maximum map bucket size to INT_MAX Otherwise, it is possible to hit WARN_ON_ONCE in __kvmalloc_node_noprof() when resizing hashtable because __GFP_NOWARN is unset. Similar to: b541ba7d1f5a ("netfilter: conntrack: clamp maximum hashtable size to INT_MAX")
CVE-2025-38205 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid divide by zero by initializing dummy pitch to 1 [Why] If the dummy values in `populate_dummy_dml_surface_cfg()` aren't updated then they can lead to a divide by zero in downstream callers like CalculateVMAndRowBytes() [How] Initialize dummy value to a value to avoid divide by zero.
CVE-2025-38207 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: fix uprobe pte be overwritten when expanding vma Patch series "Fix uprobe pte be overwritten when expanding vma". This patch (of 4): We encountered a BUG alert triggered by Syzkaller as follows: BUG: Bad rss-counter state mm:00000000b4a60fca type:MM_ANONPAGES val:1 And we can reproduce it with the following steps: 1. register uprobe on file at zero offset 2. mmap the file at zero offset: addr1 = mmap(NULL, 2 * 4096, PROT_NONE, MAP_PRIVATE, fd, 0); 3. mremap part of vma1 to new vma2: addr2 = mremap(addr1, 4096, 2 * 4096, MREMAP_MAYMOVE); 4. mremap back to orig addr1: mremap(addr2, 4096, 4096, MREMAP_MAYMOVE | MREMAP_FIXED, addr1); In step 3, the vma1 range [addr1, addr1 + 4096] will be remap to new vma2 with range [addr2, addr2 + 8192], and remap uprobe anon page from the vma1 to vma2, then unmap the vma1 range [addr1, addr1 + 4096]. In step 4, the vma2 range [addr2, addr2 + 4096] will be remap back to the addr range [addr1, addr1 + 4096]. Since the addr range [addr1 + 4096, addr1 + 8192] still maps the file, it will take vma_merge_new_range to expand the range, and then do uprobe_mmap in vma_complete. Since the merged vma pgoff is also zero offset, it will install uprobe anon page to the merged vma. However, the upcomming move_page_tables step, which use set_pte_at to remap the vma2 uprobe pte to the merged vma, will overwrite the newly uprobe pte in the merged vma, and lead that pte to be orphan. Since the uprobe pte will be remapped to the merged vma, we can remove the unnecessary uprobe_mmap upon merged vma. This problem was first found in linux-6.6.y and also exists in the community syzkaller: https://lore.kernel.org/all/000000000000ada39605a5e71711@google.com/T/
CVE-2018-4878 6 Adobe, Apple, Google and 3 more 11 Flash Player, Macos, Chrome Os and 8 more 2025-11-18 7.8 High
A use-after-free vulnerability was discovered in Adobe Flash Player before 28.0.0.161. This vulnerability occurs due to a dangling pointer in the Primetime SDK related to media player handling of listener objects. A successful attack can lead to arbitrary code execution. This was exploited in the wild in January and February 2018.