Filtered by vendor Linux Subscriptions
Total 16541 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-54101 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: use _safe loop iterator to avoid a use after free The hash_for_each_possible() loop dereferences "eve_data" to get the next item on the list. However the loop frees eve_data so it leads to a use after free. Use hash_for_each_possible_safe() instead.
CVE-2023-54120 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix race condition in hidp_session_thread There is a potential race condition in hidp_session_thread that may lead to use-after-free. For instance, the timer is active while hidp_del_timer is called in hidp_session_thread(). After hidp_session_put, then 'session' will be freed, causing kernel panic when hidp_idle_timeout is running. The solution is to use del_timer_sync instead of del_timer. Here is the call trace: ? hidp_session_probe+0x780/0x780 call_timer_fn+0x2d/0x1e0 __run_timers.part.0+0x569/0x940 hidp_session_probe+0x780/0x780 call_timer_fn+0x1e0/0x1e0 ktime_get+0x5c/0xf0 lapic_next_deadline+0x2c/0x40 clockevents_program_event+0x205/0x320 run_timer_softirq+0xa9/0x1b0 __do_softirq+0x1b9/0x641 __irq_exit_rcu+0xdc/0x190 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0xa1/0xc0
CVE-2025-68367 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse The following warning appears when running syzkaller, and this issue also exists in the mainline code. ------------[ cut here ]------------ list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100. WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130 Modules linked in: CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__list_add_valid_or_report+0xf7/0x130 RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817 RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001 RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100 R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48 FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 80000000 Call Trace: <TASK> input_register_handler+0xb3/0x210 mac_hid_start_emulation+0x1c5/0x290 mac_hid_toggle_emumouse+0x20a/0x240 proc_sys_call_handler+0x4c2/0x6e0 new_sync_write+0x1b1/0x2d0 vfs_write+0x709/0x950 ksys_write+0x12a/0x250 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x78/0xe2 The WARNING occurs when two processes concurrently write to the mac-hid emulation sysctl, causing a race condition in mac_hid_toggle_emumouse(). Both processes read old_val=0, then both try to register the input handler, leading to a double list_add of the same handler. CPU0 CPU1 ------------------------- ------------------------- vfs_write() //write 1 vfs_write() //write 1 proc_sys_write() proc_sys_write() mac_hid_toggle_emumouse() mac_hid_toggle_emumouse() old_val = *valp // old_val=0 old_val = *valp // old_val=0 mutex_lock_killable() proc_dointvec() // *valp=1 mac_hid_start_emulation() input_register_handler() mutex_unlock() mutex_lock_killable() proc_dointvec() mac_hid_start_emulation() input_register_handler() //Trigger Warning mutex_unlock() Fix this by moving the old_val read inside the mutex lock region.
CVE-2023-54134 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: autofs: fix memory leak of waitqueues in autofs_catatonic_mode Syzkaller reports a memory leak: BUG: memory leak unreferenced object 0xffff88810b279e00 (size 96): comm "syz-executor399", pid 3631, jiffies 4294964921 (age 23.870s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 9e 27 0b 81 88 ff ff ..........'..... 08 9e 27 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ..'............. backtrace: [<ffffffff814cfc90>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff81bb75ca>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff81bb75ca>] autofs_wait+0x3fa/0x9a0 fs/autofs/waitq.c:378 [<ffffffff81bb88a7>] autofs_do_expire_multi+0xa7/0x3e0 fs/autofs/expire.c:593 [<ffffffff81bb8c33>] autofs_expire_multi+0x53/0x80 fs/autofs/expire.c:619 [<ffffffff81bb6972>] autofs_root_ioctl_unlocked+0x322/0x3b0 fs/autofs/root.c:897 [<ffffffff81bb6a95>] autofs_root_ioctl+0x25/0x30 fs/autofs/root.c:910 [<ffffffff81602a9c>] vfs_ioctl fs/ioctl.c:51 [inline] [<ffffffff81602a9c>] __do_sys_ioctl fs/ioctl.c:870 [inline] [<ffffffff81602a9c>] __se_sys_ioctl fs/ioctl.c:856 [inline] [<ffffffff81602a9c>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:856 [<ffffffff84608225>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84608225>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd autofs_wait_queue structs should be freed if their wait_ctr becomes zero. Otherwise they will be lost. In this case an AUTOFS_IOC_EXPIRE_MULTI ioctl is done, then a new waitqueue struct is allocated in autofs_wait(), its initial wait_ctr equals 2. After that wait_event_killable() is interrupted (it returns -ERESTARTSYS), so that 'wq->name.name == NULL' condition may be not satisfied. Actually, this condition can be satisfied when autofs_wait_release() or autofs_catatonic_mode() is called and, what is also important, wait_ctr is decremented in those places. Upon the exit of autofs_wait(), wait_ctr is decremented to 1. Then the unmounting process begins: kill_sb calls autofs_catatonic_mode(), which should have freed the waitqueues, but it only decrements its usage counter to zero which is not a correct behaviour. edit:imk This description is of course not correct. The umount performed as a result of an expire is a umount of a mount that has been automounted, it's not the autofs mount itself. They happen independently, usually after everything mounted within the autofs file system has been expired away. If everything hasn't been expired away the automount daemon can still exit leaving mounts in place. But expires done in both cases will result in a notification that calls autofs_wait_release() with a result status. The problem case is the summary execution of of the automount daemon. In this case any waiting processes won't be woken up until either they are terminated or the mount is umounted. end edit: imk So in catatonic mode we should free waitqueues which counter becomes zero. edit: imk Initially I was concerned that the calling of autofs_wait_release() and autofs_catatonic_mode() was not mutually exclusive but that can't be the case (obviously) because the queue entry (or entries) is removed from the list when either of these two functions are called. Consequently the wait entry will be freed by only one of these functions or by the woken process in autofs_wait() depending on the order of the calls. end edit: imk
CVE-2025-68376 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: ETR: Fix ETR buffer use-after-free issue When ETR is enabled as CS_MODE_SYSFS, if the buffer size is changed and enabled again, currently sysfs_buf will point to the newly allocated memory(buf_new) and free the old memory(buf_old). But the etr_buf that is being used by the ETR remains pointed to buf_old, not updated to buf_new. In this case, it will result in a memory use-after-free issue. Fix this by checking ETR's mode before updating and releasing buf_old, if the mode is CS_MODE_SYSFS, then skip updating and releasing it.
CVE-2022-50718 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix pci device refcount leak As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So before returning from amdgpu_device_resume|suspend_display_audio(), pci_dev_put() is called to avoid refcount leak.
CVE-2022-50736 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix immediate work request flush to completion queue Correctly set send queue element opcode during immediate work request flushing in post sendqueue operation, if the QP is in ERROR state. An undefined ocode value results in out-of-bounds access to an array for mapping the opcode between siw internal and RDMA core representation in work completion generation. It resulted in a KASAN BUG report of type 'global-out-of-bounds' during NFSoRDMA testing. This patch further fixes a potential case of a malicious user which may write undefined values for completion queue elements status or opcode, if the CQ is memory mapped to user land. It avoids the same out-of-bounds access to arrays for status and opcode mapping as described above.
CVE-2022-50748 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipc: mqueue: fix possible memory leak in init_mqueue_fs() commit db7cfc380900 ("ipc: Free mq_sysctls if ipc namespace creation failed") Here's a similar memory leak to the one fixed by the patch above. retire_mq_sysctls need to be called when init_mqueue_fs fails after setup_mq_sysctls.
CVE-2022-50766 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block().
CVE-2023-54047 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: dw_hdmi: cleanup drm encoder during unbind This fixes a use-after-free crash during rmmod. The DRM encoder is embedded inside the larger rockchip_hdmi, which is allocated with the component. The component memory gets freed before the main drm device is destroyed. Fix it by running encoder cleanup before tearing down its container. [moved encoder cleanup above clk_disable, similar to bind-error-path]
CVE-2023-54050 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memleak when insert_old_idx() failed Following process will cause a memleak for copied up znode: dirty_cow_znode zn = copy_znode(c, znode); err = insert_old_idx(c, zbr->lnum, zbr->offs); if (unlikely(err)) return ERR_PTR(err); // No one refers to zn. Fetch a reproducer in [Link]. Function copy_znode() is split into 2 parts: resource allocation and znode replacement, insert_old_idx() is split in similar way, so resource cleanup could be done in error handling path without corrupting metadata(mem & disk). It's okay that old index inserting is put behind of add_idx_dirt(), old index is used in layout_leb_in_gaps(), so the two processes do not depend on each other.
CVE-2023-54056 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kheaders: Use array declaration instead of char Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination and source buffers. Defining kernel_headers_data as "char" would trip this check. Since these addresses are treated as byte arrays, define them as arrays (as done everywhere else). This was seen with: $ cat /sys/kernel/kheaders.tar.xz >> /dev/null detected buffer overflow in memcpy kernel BUG at lib/string_helpers.c:1027! ... RIP: 0010:fortify_panic+0xf/0x20 [...] Call Trace: <TASK> ikheaders_read+0x45/0x50 [kheaders] kernfs_fop_read_iter+0x1a4/0x2f0 ...
CVE-2023-54062 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix invalid free tracking in ext4_xattr_move_to_block() In ext4_xattr_move_to_block(), the value of the extended attribute which we need to move to an external block may be allocated by kvmalloc() if the value is stored in an external inode. So at the end of the function the code tried to check if this was the case by testing entry->e_value_inum. However, at this point, the pointer to the xattr entry is no longer valid, because it was removed from the original location where it had been stored. So we could end up calling kvfree() on a pointer which was not allocated by kvmalloc(); or we could also potentially leak memory by not freeing the buffer when it should be freed. Fix this by storing whether it should be freed in a separate variable.
CVE-2023-54072 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix potential data race at PCM memory allocation helpers The PCM memory allocation helpers have a sanity check against too many buffer allocations. However, the check is performed without a proper lock and the allocation isn't serialized; this allows user to allocate more memories than predefined max size. Practically seen, this isn't really a big problem, as it's more or less some "soft limit" as a sanity check, and it's not possible to allocate unlimitedly. But it's still better to address this for more consistent behavior. The patch covers the size check in do_alloc_pages() with the card->memory_mutex, and increases the allocated size there for preventing the further overflow. When the actual allocation fails, the size is decreased accordingly.
CVE-2023-54076 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix missed ses refcounting Use new cifs_smb_ses_inc_refcount() helper to get an active reference of @ses and @ses->dfs_root_ses (if set). This will prevent @ses->dfs_root_ses of being put in the next call to cifs_put_smb_ses() and thus potentially causing an use-after-free bug.
CVE-2023-54102 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow A static code analysis tool flagged the possibility of buffer overflow when using copy_from_user() for a debugfs entry. Currently, it is possible that copy_from_user() copies more bytes than what would fit in the mybuf char array. Add a min() restriction check between sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect against buffer overflow.
CVE-2023-54104 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op() 'op-cs' is copied in 'fun->mchip_number' which is used to access the 'mchip_offsets' and the 'rnb_gpio' arrays. These arrays have NAND_MAX_CHIPS elements, so the index must be below this limit. Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This would lead to out-of-bound accesses.
CVE-2023-54133 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: nfp: clean mc addresses in application firmware when closing port When moving devices from one namespace to another, mc addresses are cleaned in software while not removed from application firmware. Thus the mc addresses are remained and will cause resource leak. Now use `__dev_mc_unsync` to clean mc addresses when closing port.
CVE-2022-50721 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg The calling convention for pre_slave_sg is to return NULL on error and provide an error log to the system. Qcom-adm instead provide error pointer when an error occur. This indirectly cause kernel panic for example for the nandc driver that checks only if the pointer returned by device_prep_slave_sg is not NULL. Returning an error pointer makes nandc think the device_prep_slave_sg function correctly completed and makes the kernel panics later in the code. While nandc is the one that makes the kernel crash, it was pointed out that the real problem is qcom-adm not following calling convention for that function. To fix this, drop returning error pointer and return NULL with an error log.
CVE-2022-50723 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: fix memory leak in bnxt_nvm_test() Free the kzalloc'ed buffer before returning in the success path.