Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16990 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50630 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mm: hugetlb: fix UAF in hugetlb_handle_userfault The vma_lock and hugetlb_fault_mutex are dropped before handling userfault and reacquire them again after handle_userfault(), but reacquire the vma_lock could lead to UAF[1,2] due to the following race, hugetlb_fault hugetlb_no_page /*unlock vma_lock */ hugetlb_handle_userfault handle_userfault /* unlock mm->mmap_lock*/ vm_mmap_pgoff do_mmap mmap_region munmap_vma_range /* clean old vma */ /* lock vma_lock again <--- UAF */ /* unlock vma_lock */ Since the vma_lock will unlock immediately after hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in hugetlb_handle_userfault() to fix the issue. [1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/ [2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/ | ||||
| CVE-2022-50628 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/gud: Fix UBSAN warning UBSAN complains about invalid value for bool: [ 101.165172] [drm] Initialized gud 1.0.0 20200422 for 2-3.2:1.0 on minor 1 [ 101.213360] gud 2-3.2:1.0: [drm] fb1: guddrmfb frame buffer device [ 101.213426] usbcore: registered new interface driver gud [ 101.989431] ================================================================================ [ 101.989441] UBSAN: invalid-load in linux/include/linux/iosys-map.h:253:9 [ 101.989447] load of value 121 is not a valid value for type '_Bool' [ 101.989451] CPU: 1 PID: 455 Comm: kworker/1:6 Not tainted 5.18.0-rc5-gud-5.18-rc5 #3 [ 101.989456] Hardware name: Hewlett-Packard HP EliteBook 820 G1/1991, BIOS L71 Ver. 01.44 04/12/2018 [ 101.989459] Workqueue: events_long gud_flush_work [gud] [ 101.989471] Call Trace: [ 101.989474] <TASK> [ 101.989479] dump_stack_lvl+0x49/0x5f [ 101.989488] dump_stack+0x10/0x12 [ 101.989493] ubsan_epilogue+0x9/0x3b [ 101.989498] __ubsan_handle_load_invalid_value.cold+0x44/0x49 [ 101.989504] dma_buf_vmap.cold+0x38/0x3d [ 101.989511] ? find_busiest_group+0x48/0x300 [ 101.989520] drm_gem_shmem_vmap+0x76/0x1b0 [drm_shmem_helper] [ 101.989528] drm_gem_shmem_object_vmap+0x9/0xb [drm_shmem_helper] [ 101.989535] drm_gem_vmap+0x26/0x60 [drm] [ 101.989594] drm_gem_fb_vmap+0x47/0x150 [drm_kms_helper] [ 101.989630] gud_prep_flush+0xc1/0x710 [gud] [ 101.989639] ? _raw_spin_lock+0x17/0x40 [ 101.989648] gud_flush_work+0x1e0/0x430 [gud] [ 101.989653] ? __switch_to+0x11d/0x470 [ 101.989664] process_one_work+0x21f/0x3f0 [ 101.989673] worker_thread+0x200/0x3e0 [ 101.989679] ? rescuer_thread+0x390/0x390 [ 101.989684] kthread+0xfd/0x130 [ 101.989690] ? kthread_complete_and_exit+0x20/0x20 [ 101.989696] ret_from_fork+0x22/0x30 [ 101.989706] </TASK> [ 101.989708] ================================================================================ The source of this warning is in iosys_map_clear() called from dma_buf_vmap(). It conditionally sets values based on map->is_iomem. The iosys_map variables are allocated uninitialized on the stack leading to ->is_iomem having all kinds of values and not only 0/1. Fix this by zeroing the iosys_map variables. | ||||
| CVE-2022-50620 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to invalidate dcc->f2fs_issue_discard in error path Syzbot reports a NULL pointer dereference issue as below: __refcount_add include/linux/refcount.h:193 [inline] __refcount_inc include/linux/refcount.h:250 [inline] refcount_inc include/linux/refcount.h:267 [inline] get_task_struct include/linux/sched/task.h:110 [inline] kthread_stop+0x34/0x1c0 kernel/kthread.c:703 f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638 kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522 deactivate_locked_super+0x70/0xe8 fs/super.c:332 deactivate_super+0xd0/0xd4 fs/super.c:363 cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186 __cleanup_mnt+0x20/0x30 fs/namespace.c:1193 task_work_run+0xc4/0x14c kernel/task_work.c:177 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x26c/0xbe0 kernel/exit.c:795 do_group_exit+0x60/0xe8 kernel/exit.c:925 __do_sys_exit_group kernel/exit.c:936 [inline] __se_sys_exit_group kernel/exit.c:934 [inline] __wake_up_parent+0x0/0x40 kernel/exit.c:934 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 The root cause of this issue is in error path of f2fs_start_discard_thread(), it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may access invalid pointer. | ||||
| CVE-2022-50619 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr() If the number of pages from the userptr BO differs from the SG BO then the allocated memory for the SG table doesn't get freed before returning -EINVAL, which may lead to a memory leak in some error paths. Fix this by checking the number of pages before allocating memory for the SG table. | ||||
| CVE-2022-50617 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/powerplay/psm: Fix memory leak in power state init Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power state init") made the power state init function return early in case of failure to get an entry from the powerplay table, but it missed to clean up the allocated memory for the current power state before returning. | ||||
| CVE-2023-53768 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: regmap-irq: Fix out-of-bounds access when allocating config buffers When allocating the 2D array for handling IRQ type registers in regmap_add_irq_chip_fwnode(), the intent is to allocate a matrix with num_config_bases rows and num_config_regs columns. This is currently handled by allocating a buffer to hold a pointer for each row (i.e. num_config_bases). After that, the logic attempts to allocate the memory required to hold the register configuration for each row. However, instead of doing this allocation for each row (i.e. num_config_bases allocations), the logic erroneously does this allocation num_config_regs number of times. This scenario can lead to out-of-bounds accesses when num_config_regs is greater than num_config_bases. Fix this by updating the terminating condition of the loop that allocates the memory for holding the register configuration to allocate memory only for each row in the matrix. Amit Pundir reported a crash that was occurring on his db845c device due to memory corruption (see "Closes" tag for Amit's report). The KASAN report below helped narrow it down to this issue: [ 14.033877][ T1] ================================================================== [ 14.042507][ T1] BUG: KASAN: invalid-access in regmap_add_irq_chip_fwnode+0x594/0x1364 [ 14.050796][ T1] Write of size 8 at addr 06ffff8081021850 by task init/1 [ 14.242004][ T1] The buggy address belongs to the object at ffffff8081021850 [ 14.242004][ T1] which belongs to the cache kmalloc-8 of size 8 [ 14.255669][ T1] The buggy address is located 0 bytes inside of [ 14.255669][ T1] 8-byte region [ffffff8081021850, ffffff8081021858) | ||||
| CVE-2023-53754 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix ioremap issues in lpfc_sli4_pci_mem_setup() When if_type equals zero and pci_resource_start(pdev, PCI_64BIT_BAR4) returns false, drbl_regs_memmap_p is not remapped. This passes a NULL pointer to iounmap(), which can trigger a WARN() on certain arches. When if_type equals six and pci_resource_start(pdev, PCI_64BIT_BAR4) returns true, drbl_regs_memmap_p may has been remapped and ctrl_regs_memmap_p is not remapped. This is a resource leak and passes a NULL pointer to iounmap(). To fix these issues, we need to add null checks before iounmap(), and change some goto labels. | ||||
| CVE-2023-53756 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Fix crash due to uninitialized current_vmcs KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as a nested hypervisor on top of Hyper-V. When MSR bitmap is updated, evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark that the msr bitmap was changed. vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr -> vmx_msr_bitmap_l01_changed which in the end calls this function. The function checks for current_vmcs if it is null but the check is insufficient because current_vmcs is not initialized. Because of this, the code might incorrectly write to the structure pointed by current_vmcs value left by another task. Preemption is not disabled, the current task can be preempted and moved to another CPU while current_vmcs is accessed multiple times from evmcs_touch_msr_bitmap() which leads to crash. The manipulation of MSR bitmaps by callers happens only for vmcs01 so the solution is to use vmx->vmcs01.vmcs instead of current_vmcs. BUG: kernel NULL pointer dereference, address: 0000000000000338 PGD 4e1775067 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI ... RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel] ... Call Trace: vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel] vmx_vcpu_create+0xe6/0x540 [kvm_intel] kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm] kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm] kvm_vm_ioctl+0x53f/0x790 [kvm] __x64_sys_ioctl+0x8a/0xc0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
| CVE-2023-53759 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: HID: hidraw: fix data race on device refcount The hidraw_open() function increments the hidraw device reference counter. The counter has no dedicated synchronization mechanism, resulting in a potential data race when concurrently opening a device. The race is a regression introduced by commit 8590222e4b02 ("HID: hidraw: Replace hidraw device table mutex with a rwsem"). While minors_rwsem is intended to protect the hidraw_table itself, by instead acquiring the lock for writing, the reference counter is also protected. This is symmetrical to hidraw_release(). | ||||
| CVE-2023-53760 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: mcq: Fix &hwq->cq_lock deadlock issue When ufshcd_err_handler() is executed, CQ event interrupt can enter waiting for the same lock. This can happen in ufshcd_handle_mcq_cq_events() and also in ufs_mtk_mcq_intr(). The following warning message will be generated when &hwq->cq_lock is used in IRQ context with IRQ enabled. Use ufshcd_mcq_poll_cqe_lock() with spin_lock_irqsave instead of spin_lock to resolve the deadlock issue. [name:lockdep&]WARNING: inconsistent lock state [name:lockdep&]-------------------------------- [name:lockdep&]inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. [name:lockdep&]kworker/u16:4/260 [HC0[0]:SC0[0]:HE1:SE1] takes: ffffff8028444600 (&hwq->cq_lock){?.-.}-{2:2}, at: ufshcd_mcq_poll_cqe_lock+0x30/0xe0 [name:lockdep&]{IN-HARDIRQ-W} state was registered at: lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufs_mtk_mcq_intr+0x60/0x1bc [ufs_mediatek_mod] __handle_irq_event_percpu+0x140/0x3ec handle_irq_event+0x50/0xd8 handle_fasteoi_irq+0x148/0x2b0 generic_handle_domain_irq+0x4c/0x6c gic_handle_irq+0x58/0x134 call_on_irq_stack+0x40/0x74 do_interrupt_handler+0x84/0xe4 el1_interrupt+0x3c/0x78 <snip> Possible unsafe locking scenario: CPU0 ---- lock(&hwq->cq_lock); <Interrupt> lock(&hwq->cq_lock); *** DEADLOCK *** 2 locks held by kworker/u16:4/260: [name:lockdep&] stack backtrace: CPU: 7 PID: 260 Comm: kworker/u16:4 Tainted: G S W OE 6.1.17-mainline-android14-2-g277223301adb #1 Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0x10c/0x160 show_stack+0x20/0x30 dump_stack_lvl+0x98/0xd8 dump_stack+0x20/0x60 print_usage_bug+0x584/0x76c mark_lock_irq+0x488/0x510 mark_lock+0x1ec/0x25c __lock_acquire+0x4d8/0xffc lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufshcd_poll+0x68/0x1b0 ufshcd_transfer_req_compl+0x9c/0xc8 ufshcd_err_handler+0x3bc/0xea0 process_one_work+0x2f4/0x7e8 worker_thread+0x234/0x450 kthread+0x110/0x134 ret_from_fork+0x10/0x20 | ||||
| CVE-2023-53763 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Revert "f2fs: fix to do sanity check on extent cache correctly" syzbot reports a f2fs bug as below: UBSAN: array-index-out-of-bounds in fs/f2fs/f2fs.h:3275:19 index 1409 is out of range for type '__le32[923]' (aka 'unsigned int[923]') Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348 inline_data_addr fs/f2fs/f2fs.h:3275 [inline] __recover_inline_status fs/f2fs/inode.c:113 [inline] do_read_inode fs/f2fs/inode.c:480 [inline] f2fs_iget+0x4730/0x48b0 fs/f2fs/inode.c:604 f2fs_fill_super+0x640e/0x80c0 fs/f2fs/super.c:4601 mount_bdev+0x276/0x3b0 fs/super.c:1391 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 do_new_mount+0x28f/0xae0 fs/namespace.c:3335 do_mount fs/namespace.c:3675 [inline] __do_sys_mount fs/namespace.c:3884 [inline] __se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The issue was bisected to: commit d48a7b3a72f121655d95b5157c32c7d555e44c05 Author: Chao Yu <chao@kernel.org> Date: Mon Jan 9 03:49:20 2023 +0000 f2fs: fix to do sanity check on extent cache correctly The root cause is we applied both v1 and v2 of the patch, v2 is the right fix, so it needs to revert v1 in order to fix reported issue. v1: commit d48a7b3a72f1 ("f2fs: fix to do sanity check on extent cache correctly") https://lore.kernel.org/lkml/20230109034920.492914-1-chao@kernel.org/ v2: commit 269d11948100 ("f2fs: fix to do sanity check on extent cache correctly") https://lore.kernel.org/lkml/20230207134808.1827869-1-chao@kernel.org/ | ||||
| CVE-2025-33202 | 3 Linux, Microsoft, Nvidia | 4 Linux, Linux Kernel, Windows and 1 more | 2025-12-08 | 6.5 Medium |
| NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where an attacker could cause a stack overflow by sending extra-large payloads. A successful exploit of this vulnerability might lead to denial of service. | ||||
| CVE-2025-11935 | 3 Apple, Linux, Wolfssl | 3 Macos, Linux Kernel, Wolfssl | 2025-12-08 | 7.5 High |
| With TLS 1.3 pre-shared key (PSK) a malicious or faulty server could ignore the request for PFS (perfect forward secrecy) and the client would continue on with the connection using PSK without PFS. This happened when a server responded to a ClientHello containing psk_dhe_ke without a key_share extension. The re-use of an authenticated PSK connection that on the clients side unexpectedly did not have PFS, reduces the security of the connection. | ||||
| CVE-2025-11934 | 3 Apple, Linux, Wolfssl | 3 Macos, Linux Kernel, Wolfssl | 2025-12-08 | 2.7 Low |
| Improper input validation in the TLS 1.3 CertificateVerify signature algorithm negotiation in wolfSSL 5.8.2 and earlier on multiple platforms allows for downgrading the signature algorithm used. For example when a client sends ECDSA P521 as the supported signature algorithm the server previously could respond as ECDSA P256 being the accepted signature algorithm and the connection would continue with using ECDSA P256, if the client supports ECDSA P256. | ||||
| CVE-2025-11933 | 3 Apple, Linux, Wolfssl | 3 Macos, Linux Kernel, Wolfssl | 2025-12-08 | 6.5 Medium |
| Improper Input Validation in the TLS 1.3 CKS extension parsing in wolfSSL 5.8.2 and earlier on multiple platforms allows a remote unauthenticated attacker to potentially cause a denial-of-service via a crafted ClientHello message with duplicate CKS extensions. | ||||
| CVE-2025-40264 | 1 Linux | 1 Linux Kernel | 2025-12-06 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: be2net: pass wrb_params in case of OS2BMC be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL at be_send_pkt_to_bmc() call site. This may lead to dereferencing a NULL pointer when processing a workaround for specific packet, as commit bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6 packet") states. The correct way would be to pass the wrb_params from be_xmit(). | ||||
| CVE-2025-40262 | 1 Linux | 1 Linux Kernel | 2025-12-06 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: Input: imx_sc_key - fix memory corruption on unload This is supposed to be "priv" but we accidentally pass "&priv" which is an address in the stack and so it will lead to memory corruption when the imx_sc_key_action() function is called. Remove the &. | ||||
| CVE-2025-40261 | 1 Linux | 1 Linux Kernel | 2025-12-06 | 6.6 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nvme: nvme-fc: Ensure ->ioerr_work is cancelled in nvme_fc_delete_ctrl() nvme_fc_delete_assocation() waits for pending I/O to complete before returning, and an error can cause ->ioerr_work to be queued after cancel_work_sync() had been called. Move the call to cancel_work_sync() to be after nvme_fc_delete_association() to ensure ->ioerr_work is not running when the nvme_fc_ctrl object is freed. Otherwise the following can occur: [ 1135.911754] list_del corruption, ff2d24c8093f31f8->next is NULL [ 1135.917705] ------------[ cut here ]------------ [ 1135.922336] kernel BUG at lib/list_debug.c:52! [ 1135.926784] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 1135.931851] CPU: 48 UID: 0 PID: 726 Comm: kworker/u449:23 Kdump: loaded Not tainted 6.12.0 #1 PREEMPT(voluntary) [ 1135.943490] Hardware name: Dell Inc. PowerEdge R660/0HGTK9, BIOS 2.5.4 01/16/2025 [ 1135.950969] Workqueue: 0x0 (nvme-wq) [ 1135.954673] RIP: 0010:__list_del_entry_valid_or_report.cold+0xf/0x6f [ 1135.961041] Code: c7 c7 98 68 72 94 e8 26 45 fe ff 0f 0b 48 c7 c7 70 68 72 94 e8 18 45 fe ff 0f 0b 48 89 fe 48 c7 c7 80 69 72 94 e8 07 45 fe ff <0f> 0b 48 89 d1 48 c7 c7 a0 6a 72 94 48 89 c2 e8 f3 44 fe ff 0f 0b [ 1135.979788] RSP: 0018:ff579b19482d3e50 EFLAGS: 00010046 [ 1135.985015] RAX: 0000000000000033 RBX: ff2d24c8093f31f0 RCX: 0000000000000000 [ 1135.992148] RDX: 0000000000000000 RSI: ff2d24d6bfa1d0c0 RDI: ff2d24d6bfa1d0c0 [ 1135.999278] RBP: ff2d24c8093f31f8 R08: 0000000000000000 R09: ffffffff951e2b08 [ 1136.006413] R10: ffffffff95122ac8 R11: 0000000000000003 R12: ff2d24c78697c100 [ 1136.013546] R13: fffffffffffffff8 R14: 0000000000000000 R15: ff2d24c78697c0c0 [ 1136.020677] FS: 0000000000000000(0000) GS:ff2d24d6bfa00000(0000) knlGS:0000000000000000 [ 1136.028765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1136.034510] CR2: 00007fd207f90b80 CR3: 000000163ea22003 CR4: 0000000000f73ef0 [ 1136.041641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1136.048776] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 1136.055910] PKRU: 55555554 [ 1136.058623] Call Trace: [ 1136.061074] <TASK> [ 1136.063179] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.067540] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.071898] ? move_linked_works+0x4a/0xa0 [ 1136.075998] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.081744] ? __die_body.cold+0x8/0x12 [ 1136.085584] ? die+0x2e/0x50 [ 1136.088469] ? do_trap+0xca/0x110 [ 1136.091789] ? do_error_trap+0x65/0x80 [ 1136.095543] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.101289] ? exc_invalid_op+0x50/0x70 [ 1136.105127] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.110874] ? asm_exc_invalid_op+0x1a/0x20 [ 1136.115059] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.120806] move_linked_works+0x4a/0xa0 [ 1136.124733] worker_thread+0x216/0x3a0 [ 1136.128485] ? __pfx_worker_thread+0x10/0x10 [ 1136.132758] kthread+0xfa/0x240 [ 1136.135904] ? __pfx_kthread+0x10/0x10 [ 1136.139657] ret_from_fork+0x31/0x50 [ 1136.143236] ? __pfx_kthread+0x10/0x10 [ 1136.146988] ret_from_fork_asm+0x1a/0x30 [ 1136.150915] </TASK> | ||||
| CVE-2025-40259 | 1 Linux | 1 Linux Kernel | 2025-12-06 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Do not sleep in atomic context sg_finish_rem_req() calls blk_rq_unmap_user(). The latter function may sleep. Hence, call sg_finish_rem_req() with interrupts enabled instead of disabled. | ||||
| CVE-2025-40258 | 1 Linux | 1 Linux Kernel | 2025-12-06 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: fix race condition in mptcp_schedule_work() syzbot reported use-after-free in mptcp_schedule_work() [1] Issue here is that mptcp_schedule_work() schedules a work, then gets a refcount on sk->sk_refcnt if the work was scheduled. This refcount will be released by mptcp_worker(). [A] if (schedule_work(...)) { [B] sock_hold(sk); return true; } Problem is that mptcp_worker() can run immediately and complete before [B] We need instead : sock_hold(sk); if (schedule_work(...)) return true; sock_put(sk); [1] refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 29 at lib/refcount.c:25 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:25 Call Trace: <TASK> __refcount_add include/linux/refcount.h:-1 [inline] __refcount_inc include/linux/refcount.h:366 [inline] refcount_inc include/linux/refcount.h:383 [inline] sock_hold include/net/sock.h:816 [inline] mptcp_schedule_work+0x164/0x1a0 net/mptcp/protocol.c:943 mptcp_tout_timer+0x21/0xa0 net/mptcp/protocol.c:2316 call_timer_fn+0x17e/0x5f0 kernel/time/timer.c:1747 expire_timers kernel/time/timer.c:1798 [inline] __run_timers kernel/time/timer.c:2372 [inline] __run_timer_base+0x648/0x970 kernel/time/timer.c:2384 run_timer_base kernel/time/timer.c:2393 [inline] run_timer_softirq+0xb7/0x180 kernel/time/timer.c:2403 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] run_ktimerd+0xcf/0x190 kernel/softirq.c:1138 smpboot_thread_fn+0x542/0xa60 kernel/smpboot.c:160 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 | ||||