Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16990 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-14174 4 Apple, Google, Linux and 1 more 11 Ipados, Iphone Os, Macos and 8 more 2025-12-16 8.8 High
Out of bounds memory access in ANGLE in Google Chrome on Mac prior to 143.0.7499.110 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High)
CVE-2025-38647 1 Linux 1 Linux Kernel 2025-12-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: sar: drop lockdep assertion in rtw89_set_sar_from_acpi The following assertion is triggered on the rtw89 driver startup. It looks meaningless to hold wiphy lock on the early init stage so drop the assertion. WARNING: CPU: 7 PID: 629 at drivers/net/wireless/realtek/rtw89/sar.c:502 rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core] CPU: 7 UID: 0 PID: 629 Comm: (udev-worker) Not tainted 6.15.0+ #29 PREEMPT(lazy) Hardware name: LENOVO 21D0/LNVNB161216, BIOS J6CN50WW 09/27/2024 RIP: 0010:rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core] Call Trace: <TASK> rtw89_sar_init+0x68/0x2c0 [rtw89_core] rtw89_core_init+0x188e/0x1e50 [rtw89_core] rtw89_pci_probe+0x530/0xb50 [rtw89_pci] local_pci_probe+0xd9/0x190 pci_call_probe+0x183/0x540 pci_device_probe+0x171/0x2c0 really_probe+0x1e1/0x890 __driver_probe_device+0x18c/0x390 driver_probe_device+0x4a/0x120 __driver_attach+0x1a0/0x530 bus_for_each_dev+0x10b/0x190 bus_add_driver+0x2eb/0x540 driver_register+0x1a3/0x3a0 do_one_initcall+0xd5/0x450 do_init_module+0x2cc/0x8f0 init_module_from_file+0xe1/0x150 idempotent_init_module+0x226/0x760 __x64_sys_finit_module+0xcd/0x150 do_syscall_64+0x94/0x380 entry_SYSCALL_64_after_hwframe+0x76/0x7e Found by Linux Verification Center (linuxtesting.org).
CVE-2025-0502 4 Apple, Craftercms, Linux and 1 more 4 Macos, Craftercms, Linux Kernel and 1 more 2025-12-15 9.1 Critical
Transmission of Private Resources into a New Sphere ('Resource Leak') vulnerability in CrafterCMS Engine on Linux, MacOS, x86, Windows, 64 bit, ARM allows Directory Indexing, Resource Leak Exposure.This issue affects CrafterCMS: from 4.0.0 before 4.0.8, from 4.1.0 before 4.1.6.
CVE-2024-56705 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: atomisp: Add check for rgby_data memory allocation failure In ia_css_3a_statistics_allocate(), there is no check on the allocation result of the rgby_data memory. If rgby_data is not successfully allocated, it may trigger the assert(host_stats->rgby_data) assertion in ia_css_s3a_hmem_decode(). Adding a check to fix this potential issue.
CVE-2025-13148 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 8.1 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow could an authenticated user to change the password of another user without prior knowledge of that password.
CVE-2025-13211 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 5.3 Medium
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to cause a denial of service in the email service due to improper control of interaction frequency.
CVE-2025-13214 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 7.6 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 is vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify, or delete information in the back-end database.
CVE-2025-13481 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 8.8 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to execute arbitrary commands with elevated privileges on the system due to improper validation of user supplied input.
CVE-2025-12382 2 Algosec, Linux 2 Firewall Analyzer, Linux Kernel 2025-12-11 8.8 High
Improper Limitation of a Pathname 'Path Traversal') vulnerability in Algosec Firewall Analyzer on Linux, 64 bit allows an authenticated user to upload files to a restricted directory leading to code injection. This issue affects Algosec Firewall Analyzer: A33.0 (up to build 320), A33.10 (up to build 210).
CVE-2024-26800 1 Linux 1 Linux Kernel 2025-12-11 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tls: fix use-after-free on failed backlog decryption When the decrypt request goes to the backlog and crypto_aead_decrypt returns -EBUSY, tls_do_decryption will wait until all async decryptions have completed. If one of them fails, tls_do_decryption will return -EBADMSG and tls_decrypt_sg jumps to the error path, releasing all the pages. But the pages have been passed to the async callback, and have already been released by tls_decrypt_done. The only true async case is when crypto_aead_decrypt returns -EINPROGRESS. With -EBUSY, we already waited so we can tell tls_sw_recvmsg that the data is available for immediate copy, but we need to notify tls_decrypt_sg (via the new ->async_done flag) that the memory has already been released.
CVE-2023-5197 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-11 7.8 High
A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free. We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325.
CVE-2025-54293 2 Canonical, Linux 3 Lxd, Linux, Linux Kernel 2025-12-10 6.5 Medium
Path Traversal in the log file retrieval function in Canonical LXD 5.0 LTS on Linux allows authenticated remote attackers to read arbitrary files on the host system via crafted log file names or symbolic links.
CVE-2021-47147 1 Linux 1 Linux Kernel 2025-12-10 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: Fix a resource leak in an error handling path If an error occurs after a successful 'pci_ioremap_bar()' call, it must be undone by a corresponding 'pci_iounmap()' call, as already done in the remove function.
CVE-2022-50633 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init of_icc_get() alloc resources for path handle, we should release it when not need anymore. Like the release in dwc3_qcom_interconnect_exit() function. Add icc_put() in error handling to fix this.
CVE-2022-50643 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_copy_file_range() If the file is used by swap, before return -EOPNOTSUPP, should free the xid, otherwise, the xid will be leaked.
CVE-2022-50647 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: Make port I/O string accessors actually work Fix port I/O string accessors such as `insb', `outsb', etc. which use the physical PCI port I/O address rather than the corresponding memory mapping to get at the requested location, which in turn breaks at least accesses made by our parport driver to a PCIe parallel port such as: PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20 parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP] causing a memory access fault: Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008 Oops [#1] Modules linked in: CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23 Hardware name: SiFive HiFive Unmatched A00 (DT) epc : parport_pc_fifo_write_block_pio+0x266/0x416 ra : parport_pc_fifo_write_block_pio+0xb4/0x416 epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60 gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000 t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0 s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000 a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000 s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50 s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000 s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000 s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930 t5 : 0000000000001000 t6 : 0000000000040000 status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f [<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200 [<ffffffff8053bbc0>] parport_write+0x46/0xf8 [<ffffffff8050530e>] lp_write+0x158/0x2d2 [<ffffffff80185716>] vfs_write+0x8e/0x2c2 [<ffffffff80185a74>] ksys_write+0x52/0xc2 [<ffffffff80185af2>] sys_write+0xe/0x16 [<ffffffff80003770>] ret_from_syscall+0x0/0x2 ---[ end trace 0000000000000000 ]--- For simplicity address the problem by adding PCI_IOBASE to the physical address requested in the respective wrapper macros only, observing that the raw accessors such as `__insb', `__outsb', etc. are not supposed to be used other than by said macros. Remove the cast to `long' that is no longer needed on `addr' now that it is used as an offset from PCI_IOBASE and add parentheses around `addr' needed for predictable evaluation in macro expansion. No need to make said adjustments in separate changes given that current code is gravely broken and does not ever work.
CVE-2022-50650 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference state management for synchronous callbacks Currently, verifier verifies callback functions (sync and async) as if they will be executed once, (i.e. it explores execution state as if the function was being called once). The next insn to explore is set to start of subprog and the exit from nested frame is handled using curframe > 0 and prepare_func_exit. In case of async callback it uses a customized variant of push_stack simulating a kind of branch to set up custom state and execution context for the async callback. While this approach is simple and works when callback really will be executed only once, it is unsafe for all of our current helpers which are for_each style, i.e. they execute the callback multiple times. A callback releasing acquired references of the caller may do so multiple times, but currently verifier sees it as one call inside the frame, which then returns to caller. Hence, it thinks it released some reference that the cb e.g. got access through callback_ctx (register filled inside cb from spilled typed register on stack). Similarly, it may see that an acquire call is unpaired inside the callback, so the caller will copy the reference state of callback and then will have to release the register with new ref_obj_ids. But again, the callback may execute multiple times, but the verifier will only account for acquired references for a single symbolic execution of the callback, which will cause leaks. Note that for async callback case, things are different. While currently we have bpf_timer_set_callback which only executes it once, even for multiple executions it would be safe, as reference state is NULL and check_reference_leak would force program to release state before BPF_EXIT. The state is also unaffected by analysis for the caller frame. Hence async callback is safe. Since we want the reference state to be accessible, e.g. for pointers loaded from stack through callback_ctx's PTR_TO_STACK, we still have to copy caller's reference_state to callback's bpf_func_state, but we enforce that whatever references it adds to that reference_state has been released before it hits BPF_EXIT. This requires introducing a new callback_ref member in the reference state to distinguish between caller vs callee references. Hence, check_reference_leak now errors out if it sees we are in callback_fn and we have not released callback_ref refs. Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2 etc. we need to also distinguish between whether this particular ref belongs to this callback frame or parent, and only error for our own, so we store state->frameno (which is always non-zero for callbacks). In short, callbacks can read parent reference_state, but cannot mutate it, to be able to use pointers acquired by the caller. They must only undo their changes (by releasing their own acquired_refs before BPF_EXIT) on top of caller reference_state before returning (at which point the caller and callback state will match anyway, so no need to copy it back to caller).
CVE-2022-50651 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ethtool: eeprom: fix null-deref on genl_info in dump The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on genl_info in dump") is also needed for ethtool eeprom.
CVE-2022-50652 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: uio: uio_dmem_genirq: Fix missing unlock in irq configuration Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in uio_dmem_genirq_irqcontrol()") started calling disable_irq() without holding the spinlock because it can sleep. However, that fix introduced another bug: if interrupt is already disabled and a new disable request comes in, then the spinlock is not unlocked: root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002 [ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc] [ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21 [ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 14.855664] Call Trace: [ 14.855861] <TASK> [ 14.856025] dump_stack_lvl+0x4d/0x67 [ 14.856325] dump_stack+0x14/0x1a [ 14.856583] __schedule_bug.cold+0x4b/0x5c [ 14.856915] __schedule+0xe81/0x13d0 [ 14.857199] ? idr_find+0x13/0x20 [ 14.857456] ? get_work_pool+0x2d/0x50 [ 14.857756] ? __flush_work+0x233/0x280 [ 14.858068] ? __schedule+0xa95/0x13d0 [ 14.858307] ? idr_find+0x13/0x20 [ 14.858519] ? get_work_pool+0x2d/0x50 [ 14.858798] schedule+0x6c/0x100 [ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110 [ 14.859335] ? tty_write_room+0x1f/0x30 [ 14.859598] ? n_tty_poll+0x1ec/0x220 [ 14.859830] ? tty_ldisc_deref+0x1a/0x20 [ 14.860090] schedule_hrtimeout_range+0x17/0x20 [ 14.860373] do_select+0x596/0x840 [ 14.860627] ? __kernel_text_address+0x16/0x50 [ 14.860954] ? poll_freewait+0xb0/0xb0 [ 14.861235] ? poll_freewait+0xb0/0xb0 [ 14.861517] ? rpm_resume+0x49d/0x780 [ 14.861798] ? common_interrupt+0x59/0xa0 [ 14.862127] ? asm_common_interrupt+0x2b/0x40 [ 14.862511] ? __uart_start.isra.0+0x61/0x70 [ 14.862902] ? __check_object_size+0x61/0x280 [ 14.863255] core_sys_select+0x1c6/0x400 [ 14.863575] ? vfs_write+0x1c9/0x3d0 [ 14.863853] ? vfs_write+0x1c9/0x3d0 [ 14.864121] ? _copy_from_user+0x45/0x70 [ 14.864526] do_pselect.constprop.0+0xb3/0xf0 [ 14.864893] ? do_syscall_64+0x6d/0x90 [ 14.865228] ? do_syscall_64+0x6d/0x90 [ 14.865556] __x64_sys_pselect6+0x76/0xa0 [ 14.865906] do_syscall_64+0x60/0x90 [ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50 [ 14.866640] ? do_syscall_64+0x6d/0x90 [ 14.866972] ? do_syscall_64+0x6d/0x90 [ 14.867286] ? do_syscall_64+0x6d/0x90 [ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] stripped [ 14.872959] </TASK> ('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this) The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and it is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt configuration and handling. At the time "uio_dmem_genirq" was introduced, both had the same implementation of the 'uio_info' handlers irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency issue"), which was only applied to "uio_pdrv_genirq", ended up making them a little different. That commit, among other things, changed disable_irq() to disable_irq_nosync() in the implementation of irqcontrol(). The motivation there was to avoid a deadlock between irqcontrol() and handler(), since it added a spinlock in the irq handler, and disable_irq() waits for the completion of the irq handler. By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also avoid the sleeping-whil ---truncated---
CVE-2022-50654 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix panic due to wrong pageattr of im->image In the scenario where livepatch and kretfunc coexist, the pageattr of im->image is rox after arch_prepare_bpf_trampoline in bpf_trampoline_update, and then modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag will be configured, and arch_prepare_bpf_trampoline will be re-executed. At this time, because the pageattr of im->image is rox, arch_prepare_bpf_trampoline will read and write im->image, which causes a fault. as follows: insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c bpftrace -e 'kretfunc:cmdline_proc_show {}' BUG: unable to handle page fault for address: ffffffffa0206000 PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061 Oops: 0003 [#1] PREEMPT SMP PTI CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5 RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0 RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202 RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000 RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030 RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400 R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8 R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10 FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> bpf_trampoline_update+0x25a/0x6b0 __bpf_trampoline_link_prog+0x101/0x240 bpf_trampoline_link_prog+0x2d/0x50 bpf_tracing_prog_attach+0x24c/0x530 bpf_raw_tp_link_attach+0x73/0x1d0 __sys_bpf+0x100e/0x2570 __x64_sys_bpf+0x1c/0x30 do_syscall_64+0x5b/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd With this patch, when modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset to nx+rw.