Total
2274 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-27019 | 3 Fedoraproject, Linux, Redhat | 7 Fedora, Linux Kernel, Enterprise Linux and 4 more | 2025-11-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process. | ||||
| CVE-2024-27009 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix race condition during online processing A race condition exists in ccw_device_set_online() that can cause the online process to fail, leaving the affected device in an inconsistent state. As a result, subsequent attempts to set that device online fail with return code ENODEV. The problem occurs when a path verification request arrives after a wait for final device state completed, but before the result state is evaluated. Fix this by ensuring that the CCW-device lock is held between determining final state and checking result state. Note that since: commit 2297791c92d0 ("s390/cio: dont unregister subchannel from child-drivers") path verification requests are much more likely to occur during boot, resulting in an increased chance of this race condition occurring. | ||||
| CVE-2024-26984 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-11-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nouveau: fix instmem race condition around ptr stores Running a lot of VK CTS in parallel against nouveau, once every few hours you might see something like this crash. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 8000000114e6e067 P4D 8000000114e6e067 PUD 109046067 PMD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 7 PID: 53891 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27 Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021 RIP: 0010:gp100_vmm_pgt_mem+0xe3/0x180 [nouveau] Code: c7 48 01 c8 49 89 45 58 85 d2 0f 84 95 00 00 00 41 0f b7 46 12 49 8b 7e 08 89 da 42 8d 2c f8 48 8b 47 08 41 83 c7 01 48 89 ee <48> 8b 40 08 ff d0 0f 1f 00 49 8b 7e 08 48 89 d9 48 8d 75 04 48 c1 RSP: 0000:ffffac20c5857838 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 00000000004d8001 RCX: 0000000000000001 RDX: 00000000004d8001 RSI: 00000000000006d8 RDI: ffffa07afe332180 RBP: 00000000000006d8 R08: ffffac20c5857ad0 R09: 0000000000ffff10 R10: 0000000000000001 R11: ffffa07af27e2de0 R12: 000000000000001c R13: ffffac20c5857ad0 R14: ffffa07a96fe9040 R15: 000000000000001c FS: 00007fe395eed7c0(0000) GS:ffffa07e2c980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000011febe001 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ... ? gp100_vmm_pgt_mem+0xe3/0x180 [nouveau] ? gp100_vmm_pgt_mem+0x37/0x180 [nouveau] nvkm_vmm_iter+0x351/0xa20 [nouveau] ? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] ? __lock_acquire+0x3ed/0x2170 ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] nvkm_vmm_ptes_get_map+0xc2/0x100 [nouveau] ? __pfx_nvkm_vmm_ref_ptes+0x10/0x10 [nouveau] ? __pfx_gp100_vmm_pgt_mem+0x10/0x10 [nouveau] nvkm_vmm_map_locked+0x224/0x3a0 [nouveau] Adding any sort of useful debug usually makes it go away, so I hand wrote the function in a line, and debugged the asm. Every so often pt->memory->ptrs is NULL. This ptrs ptr is set in the nv50_instobj_acquire called from nvkm_kmap. If Thread A and Thread B both get to nv50_instobj_acquire around the same time, and Thread A hits the refcount_set line, and in lockstep thread B succeeds at refcount_inc_not_zero, there is a chance the ptrs value won't have been stored since refcount_set is unordered. Force a memory barrier here, I picked smp_mb, since we want it on all CPUs and it's write followed by a read. v2: use paired smp_rmb/smp_wmb. | ||||
| CVE-2024-27876 | 1 Apple | 4 Ipados, Iphone Os, Macos and 1 more | 2025-11-04 | 8.1 High |
| A race condition was addressed with improved locking. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, iOS 18 and iPadOS 18, macOS Sonoma 14.7, macOS Sequoia 15. Unpacking a maliciously crafted archive may allow an attacker to write arbitrary files. | ||||
| CVE-2025-22100 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix race condition when gathering fdinfo group samples Commit e16635d88fa0 ("drm/panthor: add DRM fdinfo support") failed to protect access to groups with an xarray lock, which could lead to use-after-free errors. | ||||
| CVE-2025-23132 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: quota: fix to avoid warning in dquot_writeback_dquots() F2FS-fs (dm-59): checkpoint=enable has some unwritten data. ------------[ cut here ]------------ WARNING: CPU: 6 PID: 8013 at fs/quota/dquot.c:691 dquot_writeback_dquots+0x2fc/0x308 pc : dquot_writeback_dquots+0x2fc/0x308 lr : f2fs_quota_sync+0xcc/0x1c4 Call trace: dquot_writeback_dquots+0x2fc/0x308 f2fs_quota_sync+0xcc/0x1c4 f2fs_write_checkpoint+0x3d4/0x9b0 f2fs_issue_checkpoint+0x1bc/0x2c0 f2fs_sync_fs+0x54/0x150 f2fs_do_sync_file+0x2f8/0x814 __f2fs_ioctl+0x1960/0x3244 f2fs_ioctl+0x54/0xe0 __arm64_sys_ioctl+0xa8/0xe4 invoke_syscall+0x58/0x114 checkpoint and f2fs_remount may race as below, resulting triggering warning in dquot_writeback_dquots(). atomic write remount - do_remount - down_write(&sb->s_umount); - f2fs_remount - ioctl - f2fs_do_sync_file - f2fs_sync_fs - f2fs_write_checkpoint - block_operations - locked = down_read_trylock(&sbi->sb->s_umount) : fail to lock due to the write lock was held by remount - up_write(&sb->s_umount); - f2fs_quota_sync - dquot_writeback_dquots - WARN_ON_ONCE(!rwsem_is_locked(&sb->s_umount)) : trigger warning because s_umount lock was unlocked by remount If checkpoint comes from mount/umount/remount/freeze/quotactl, caller of checkpoint has already held s_umount lock, calling dquot_writeback_dquots() in the context should be safe. So let's record task to sbi->umount_lock_holder, so that checkpoint can know whether the lock has held in the context or not by checking current w/ it. In addition, in order to not misrepresent caller of checkpoint, we should not allow to trigger async checkpoint for those callers: mount/umount/remount/ freeze/quotactl. | ||||
| CVE-2022-37035 | 1 Frrouting | 1 Frrouting | 2025-11-04 | 8.1 High |
| An issue was discovered in bgpd in FRRouting (FRR) 8.3. In bgp_notify_send_with_data() and bgp_process_packet() in bgp_packet.c, there is a possible use-after-free due to a race condition. This could lead to Remote Code Execution or Information Disclosure by sending crafted BGP packets. User interaction is not needed for exploitation. | ||||
| CVE-2021-32686 | 2 Debian, Teluu | 2 Debian Linux, Pjsip | 2025-11-04 | 5.9 Medium |
| PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In PJSIP before version 2.11.1, there are a couple of issues found in the SSL socket. First, a race condition between callback and destroy, due to the accepted socket having no group lock. Second, the SSL socket parent/listener may get destroyed during handshake. Both issues were reported to happen intermittently in heavy load TLS connections. They cause a crash, resulting in a denial of service. These are fixed in version 2.11.1. | ||||
| CVE-2016-5195 | 7 Canonical, Debian, Fedoraproject and 4 more | 24 Ubuntu Linux, Debian Linux, Fedora and 21 more | 2025-11-04 | 7 High |
| Race condition in mm/gup.c in the Linux kernel 2.x through 4.x before 4.8.3 allows local users to gain privileges by leveraging incorrect handling of a copy-on-write (COW) feature to write to a read-only memory mapping, as exploited in the wild in October 2016, aka "Dirty COW." | ||||
| CVE-2025-64118 | 1 Node-tar Project | 1 Node-tar | 2025-11-04 | N/A |
| node-tar is a Tar for Node.js. In 7.5.1, using .t (aka .list) with { sync: true } to read tar entry contents returns uninitialized memory contents if tar file was changed on disk to a smaller size while being read. This vulnerability is fixed in 7.5.2. | ||||
| CVE-2025-64168 | 1 Agno-agi | 1 Agno | 2025-11-04 | 7.1 High |
| Agno is a multi-agent framework, runtime and control plane. From 2.0.0 to before 2.2.2, under high concurrency, when session_state is passed to Agent or Team during run or arun calls, a race condition can occur, causing a session_state to be assigned and persisted to the incorrect session. This may result in user data from one session being exposed to another user. This has been patched in version 2.2.2. | ||||
| CVE-2020-6819 | 2 Mozilla, Redhat | 4 Firefox, Thunderbird, Enterprise Linux and 1 more | 2025-11-04 | 8.1 High |
| Under certain conditions, when running the nsDocShell destructor, a race condition can cause a use-after-free. We are aware of targeted attacks in the wild abusing this flaw. This vulnerability affects Thunderbird < 68.7.0, Firefox < 74.0.1, and Firefox ESR < 68.6.1. | ||||
| CVE-2020-6820 | 2 Mozilla, Redhat | 4 Firefox, Thunderbird, Enterprise Linux and 1 more | 2025-11-04 | 8.1 High |
| Under certain conditions, when handling a ReadableStream, a race condition can cause a use-after-free. We are aware of targeted attacks in the wild abusing this flaw. This vulnerability affects Thunderbird < 68.7.0, Firefox < 74.0.1, and Firefox ESR < 68.6.1. | ||||
| CVE-2025-43304 | 1 Apple | 4 Macos, Macos Sequoia, Macos Sonoma and 1 more | 2025-11-04 | 7 High |
| A race condition was addressed with improved state handling. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7. An app may be able to gain root privileges. | ||||
| CVE-2024-54510 | 1 Apple | 5 Ipados, Iphone Os, Macos and 2 more | 2025-11-03 | 5.1 Medium |
| A race condition was addressed with improved locking. This issue is fixed in iPadOS 17.7.3, watchOS 11.2, tvOS 18.2, macOS Sequoia 15.2, iOS 18.2 and iPadOS 18.2, macOS Ventura 13.7.2, macOS Sonoma 14.7.2. An app may be able to leak sensitive kernel state. | ||||
| CVE-2024-54494 | 1 Apple | 6 Ipados, Iphone Os, Macos and 3 more | 2025-11-03 | 5.9 Medium |
| A race condition was addressed with additional validation. This issue is fixed in iPadOS 17.7.3, watchOS 11.2, visionOS 2.2, tvOS 18.2, macOS Sequoia 15.2, iOS 18.2 and iPadOS 18.2, macOS Ventura 13.7.2, macOS Sonoma 14.7.2. An attacker may be able to create a read-only memory mapping that can be written to. | ||||
| CVE-2024-53136 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-03 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm: revert "mm: shmem: fix data-race in shmem_getattr()" Revert d949d1d14fa2 ("mm: shmem: fix data-race in shmem_getattr()") as suggested by Chuck [1]. It is causing deadlocks when accessing tmpfs over NFS. As Hugh commented, "added just to silence a syzbot sanitizer splat: added where there has never been any practical problem". | ||||
| CVE-2024-53123 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: error out earlier on disconnect Eric reported a division by zero splat in the MPTCP protocol: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 6094 Comm: syz-executor317 Not tainted 6.12.0-rc5-syzkaller-00291-g05b92660cdfe #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__tcp_select_window+0x5b4/0x1310 net/ipv4/tcp_output.c:3163 Code: f6 44 01 e3 89 df e8 9b 75 09 f8 44 39 f3 0f 8d 11 ff ff ff e8 0d 74 09 f8 45 89 f4 e9 04 ff ff ff e8 00 74 09 f8 44 89 f0 99 <f7> 7c 24 14 41 29 d6 45 89 f4 e9 ec fe ff ff e8 e8 73 09 f8 48 89 RSP: 0018:ffffc900041f7930 EFLAGS: 00010293 RAX: 0000000000017e67 RBX: 0000000000017e67 RCX: ffffffff8983314b RDX: 0000000000000000 RSI: ffffffff898331b0 RDI: 0000000000000004 RBP: 00000000005d6000 R08: 0000000000000004 R09: 0000000000017e67 R10: 0000000000003e80 R11: 0000000000000000 R12: 0000000000003e80 R13: ffff888031d9b440 R14: 0000000000017e67 R15: 00000000002eb000 FS: 00007feb5d7f16c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007feb5d8adbb8 CR3: 0000000074e4c000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __tcp_cleanup_rbuf+0x3e7/0x4b0 net/ipv4/tcp.c:1493 mptcp_rcv_space_adjust net/mptcp/protocol.c:2085 [inline] mptcp_recvmsg+0x2156/0x2600 net/mptcp/protocol.c:2289 inet_recvmsg+0x469/0x6a0 net/ipv4/af_inet.c:885 sock_recvmsg_nosec net/socket.c:1051 [inline] sock_recvmsg+0x1b2/0x250 net/socket.c:1073 __sys_recvfrom+0x1a5/0x2e0 net/socket.c:2265 __do_sys_recvfrom net/socket.c:2283 [inline] __se_sys_recvfrom net/socket.c:2279 [inline] __x64_sys_recvfrom+0xe0/0x1c0 net/socket.c:2279 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7feb5d857559 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007feb5d7f1208 EFLAGS: 00000246 ORIG_RAX: 000000000000002d RAX: ffffffffffffffda RBX: 00007feb5d8e1318 RCX: 00007feb5d857559 RDX: 000000800000000e RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007feb5d8e1310 R08: 0000000000000000 R09: ffffffff81000000 R10: 0000000000000100 R11: 0000000000000246 R12: 00007feb5d8e131c R13: 00007feb5d8ae074 R14: 000000800000000e R15: 00000000fffffdef and provided a nice reproducer. The root cause is the current bad handling of racing disconnect. After the blamed commit below, sk_wait_data() can return (with error) with the underlying socket disconnected and a zero rcv_mss. Catch the error and return without performing any additional operations on the current socket. | ||||
| CVE-2024-53122 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: cope racing subflow creation in mptcp_rcv_space_adjust Additional active subflows - i.e. created by the in kernel path manager - are included into the subflow list before starting the 3whs. A racing recvmsg() spooling data received on an already established subflow would unconditionally call tcp_cleanup_rbuf() on all the current subflows, potentially hitting a divide by zero error on the newly created ones. Explicitly check that the subflow is in a suitable state before invoking tcp_cleanup_rbuf(). | ||||
| CVE-2024-53121 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, lock FTE when checking if active The referenced commits introduced a two-step process for deleting FTEs: - Lock the FTE, delete it from hardware, set the hardware deletion function to NULL and unlock the FTE. - Lock the parent flow group, delete the software copy of the FTE, and remove it from the xarray. However, this approach encounters a race condition if a rule with the same match value is added simultaneously. In this scenario, fs_core may set the hardware deletion function to NULL prematurely, causing a panic during subsequent rule deletions. To prevent this, ensure the active flag of the FTE is checked under a lock, which will prevent the fs_core layer from attaching a new steering rule to an FTE that is in the process of deletion. [ 438.967589] MOSHE: 2496 mlx5_del_flow_rules del_hw_func [ 438.968205] ------------[ cut here ]------------ [ 438.968654] refcount_t: decrement hit 0; leaking memory. [ 438.969249] WARNING: CPU: 0 PID: 8957 at lib/refcount.c:31 refcount_warn_saturate+0xfb/0x110 [ 438.970054] Modules linked in: act_mirred cls_flower act_gact sch_ingress openvswitch nsh mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core zram zsmalloc fuse [last unloaded: cls_flower] [ 438.973288] CPU: 0 UID: 0 PID: 8957 Comm: tc Not tainted 6.12.0-rc1+ #8 [ 438.973888] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 438.974874] RIP: 0010:refcount_warn_saturate+0xfb/0x110 [ 438.975363] Code: 40 66 3b 82 c6 05 16 e9 4d 01 01 e8 1f 7c a0 ff 0f 0b c3 cc cc cc cc 48 c7 c7 10 66 3b 82 c6 05 fd e8 4d 01 01 e8 05 7c a0 ff <0f> 0b c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 90 [ 438.976947] RSP: 0018:ffff888124a53610 EFLAGS: 00010286 [ 438.977446] RAX: 0000000000000000 RBX: ffff888119d56de0 RCX: 0000000000000000 [ 438.978090] RDX: ffff88852c828700 RSI: ffff88852c81b3c0 RDI: ffff88852c81b3c0 [ 438.978721] RBP: ffff888120fa0e88 R08: 0000000000000000 R09: ffff888124a534b0 [ 438.979353] R10: 0000000000000001 R11: 0000000000000001 R12: ffff888119d56de0 [ 438.979979] R13: ffff888120fa0ec0 R14: ffff888120fa0ee8 R15: ffff888119d56de0 [ 438.980607] FS: 00007fe6dcc0f800(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000 [ 438.983984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 438.984544] CR2: 00000000004275e0 CR3: 0000000186982001 CR4: 0000000000372eb0 [ 438.985205] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 438.985842] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 438.986507] Call Trace: [ 438.986799] <TASK> [ 438.987070] ? __warn+0x7d/0x110 [ 438.987426] ? refcount_warn_saturate+0xfb/0x110 [ 438.987877] ? report_bug+0x17d/0x190 [ 438.988261] ? prb_read_valid+0x17/0x20 [ 438.988659] ? handle_bug+0x53/0x90 [ 438.989054] ? exc_invalid_op+0x14/0x70 [ 438.989458] ? asm_exc_invalid_op+0x16/0x20 [ 438.989883] ? refcount_warn_saturate+0xfb/0x110 [ 438.990348] mlx5_del_flow_rules+0x2f7/0x340 [mlx5_core] [ 438.990932] __mlx5_eswitch_del_rule+0x49/0x170 [mlx5_core] [ 438.991519] ? mlx5_lag_is_sriov+0x3c/0x50 [mlx5_core] [ 438.992054] ? xas_load+0x9/0xb0 [ 438.992407] mlx5e_tc_rule_unoffload+0x45/0xe0 [mlx5_core] [ 438.993037] mlx5e_tc_del_fdb_flow+0x2a6/0x2e0 [mlx5_core] [ 438.993623] mlx5e_flow_put+0x29/0x60 [mlx5_core] [ 438.994161] mlx5e_delete_flower+0x261/0x390 [mlx5_core] [ 438.994728] tc_setup_cb_destroy+0xb9/0x190 [ 438.995150] fl_hw_destroy_filter+0x94/0xc0 [cls_flower] [ 438.995650] fl_change+0x11a4/0x13c0 [cls_flower] [ 438.996105] tc_new_tfilter+0x347/0xbc0 [ 438.996503] ? __ ---truncated--- | ||||