Total 319081 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40188 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pwm: berlin: Fix wrong register in suspend/resume The 'enable' register should be BERLIN_PWM_EN rather than BERLIN_PWM_ENABLE, otherwise, the driver accesses wrong address, there will be cpu exception then kernel panic during suspend/resume.
CVE-2025-40186 1 Linux 1 Linux Kernel 2025-11-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tcp: Don't call reqsk_fastopen_remove() in tcp_conn_request(). syzbot reported the splat below in tcp_conn_request(). [0] If a listener is close()d while a TFO socket is being processed in tcp_conn_request(), inet_csk_reqsk_queue_add() does not set reqsk->sk and calls inet_child_forget(), which calls tcp_disconnect() for the TFO socket. After the cited commit, tcp_disconnect() calls reqsk_fastopen_remove(), where reqsk_put() is called due to !reqsk->sk. Then, reqsk_fastopen_remove() in tcp_conn_request() decrements the last req->rsk_refcnt and frees reqsk, and __reqsk_free() at the drop_and_free label causes the refcount underflow for the listener and double-free of the reqsk. Let's remove reqsk_fastopen_remove() in tcp_conn_request(). Note that other callers make sure tp->fastopen_rsk is not NULL. [0]: refcount_t: underflow; use-after-free. WARNING: CPU: 12 PID: 5563 at lib/refcount.c:28 refcount_warn_saturate (lib/refcount.c:28) Modules linked in: CPU: 12 UID: 0 PID: 5563 Comm: syz-executor Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:refcount_warn_saturate (lib/refcount.c:28) Code: ab e8 8e b4 98 ff 0f 0b c3 cc cc cc cc cc 80 3d a4 e4 d6 01 00 75 9c c6 05 9b e4 d6 01 01 48 c7 c7 e8 df fb ab e8 6a b4 98 ff <0f> 0b e9 03 5b 76 00 cc 80 3d 7d e4 d6 01 00 0f 85 74 ff ff ff c6 RSP: 0018:ffffa79fc0304a98 EFLAGS: 00010246 RAX: d83af4db1c6b3900 RBX: ffff9f65c7a69020 RCX: d83af4db1c6b3900 RDX: 0000000000000000 RSI: 00000000ffff7fff RDI: ffffffffac78a280 RBP: 000000009d781b60 R08: 0000000000007fff R09: ffffffffac6ca280 R10: 0000000000017ffd R11: 0000000000000004 R12: ffff9f65c7b4f100 R13: ffff9f65c7d23c00 R14: ffff9f65c7d26000 R15: ffff9f65c7a64ef8 FS: 00007f9f962176c0(0000) GS:ffff9f65fcf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000200000000180 CR3: 000000000dbbe006 CR4: 0000000000372ef0 Call Trace: <IRQ> tcp_conn_request (./include/linux/refcount.h:400 ./include/linux/refcount.h:432 ./include/linux/refcount.h:450 ./include/net/sock.h:1965 ./include/net/request_sock.h:131 net/ipv4/tcp_input.c:7301) tcp_rcv_state_process (net/ipv4/tcp_input.c:6708) tcp_v6_do_rcv (net/ipv6/tcp_ipv6.c:1670) tcp_v6_rcv (net/ipv6/tcp_ipv6.c:1906) ip6_protocol_deliver_rcu (net/ipv6/ip6_input.c:438) ip6_input (net/ipv6/ip6_input.c:500) ipv6_rcv (net/ipv6/ip6_input.c:311) __netif_receive_skb (net/core/dev.c:6104) process_backlog (net/core/dev.c:6456) __napi_poll (net/core/dev.c:7506) net_rx_action (net/core/dev.c:7569 net/core/dev.c:7696) handle_softirqs (kernel/softirq.c:579) do_softirq (kernel/softirq.c:480) </IRQ>
CVE-2025-40184 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix debug checking for np-guests using huge mappings When running with transparent huge pages and CONFIG_NVHE_EL2_DEBUG then the debug checking in assert_host_shared_guest() fails on the launch of an np-guest. This WARN_ON() causes a panic and generates the stack below. In __pkvm_host_relax_perms_guest() the debug checking assumes the mapping is a single page but it may be a block map. Update the checking so that the size is not checked and just assumes the correct size. While we're here make the same fix in __pkvm_host_mkyoung_guest(). Info: # lkvm run -k /share/arch/arm64/boot/Image -m 704 -c 8 --name guest-128 Info: Removed ghost socket file "/.lkvm//guest-128.sock". [ 1406.521757] kvm [141]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/mem_protect.c:1088! [ 1406.521804] kvm [141]: nVHE call trace: [ 1406.521828] kvm [141]: [<ffff8000811676b4>] __kvm_nvhe_hyp_panic+0xb4/0xe8 [ 1406.521946] kvm [141]: [<ffff80008116d12c>] __kvm_nvhe_assert_host_shared_guest+0xb0/0x10c [ 1406.522049] kvm [141]: [<ffff80008116f068>] __kvm_nvhe___pkvm_host_relax_perms_guest+0x48/0x104 [ 1406.522157] kvm [141]: [<ffff800081169df8>] __kvm_nvhe_handle___pkvm_host_relax_perms_guest+0x64/0x7c [ 1406.522250] kvm [141]: [<ffff800081169f0c>] __kvm_nvhe_handle_trap+0x8c/0x1a8 [ 1406.522333] kvm [141]: [<ffff8000811680fc>] __kvm_nvhe___skip_pauth_save+0x4/0x4 [ 1406.522454] kvm [141]: ---[ end nVHE call trace ]--- [ 1406.522477] kvm [141]: Hyp Offset: 0xfffece8013600000 [ 1406.522554] Kernel panic - not syncing: HYP panic: [ 1406.522554] PS:834003c9 PC:0000b1806db6d170 ESR:00000000f2000800 [ 1406.522554] FAR:ffff8000804be420 HPFAR:0000000000804be0 PAR:0000000000000000 [ 1406.522554] VCPU:0000000000000000 [ 1406.523337] CPU: 3 UID: 0 PID: 141 Comm: kvm-vcpu-0 Not tainted 6.16.0-rc7 #97 PREEMPT [ 1406.523485] Hardware name: FVP Base RevC (DT) [ 1406.523566] Call trace: [ 1406.523629] show_stack+0x18/0x24 (C) [ 1406.523753] dump_stack_lvl+0xd4/0x108 [ 1406.523899] dump_stack+0x18/0x24 [ 1406.524040] panic+0x3d8/0x448 [ 1406.524184] nvhe_hyp_panic_handler+0x10c/0x23c [ 1406.524325] kvm_handle_guest_abort+0x68c/0x109c [ 1406.524500] handle_exit+0x60/0x17c [ 1406.524630] kvm_arch_vcpu_ioctl_run+0x2e0/0x8c0 [ 1406.524794] kvm_vcpu_ioctl+0x1a8/0x9cc [ 1406.524919] __arm64_sys_ioctl+0xac/0x104 [ 1406.525067] invoke_syscall+0x48/0x10c [ 1406.525189] el0_svc_common.constprop.0+0x40/0xe0 [ 1406.525322] do_el0_svc+0x1c/0x28 [ 1406.525441] el0_svc+0x38/0x120 [ 1406.525588] el0t_64_sync_handler+0x10c/0x138 [ 1406.525750] el0t_64_sync+0x1ac/0x1b0 [ 1406.525876] SMP: stopping secondary CPUs [ 1406.525965] Kernel Offset: disabled [ 1406.526032] CPU features: 0x0000,00000080,8e134ca1,9446773f [ 1406.526130] Memory Limit: none [ 1406.959099] ---[ end Kernel panic - not syncing: HYP panic: [ 1406.959099] PS:834003c9 PC:0000b1806db6d170 ESR:00000000f2000800 [ 1406.959099] FAR:ffff8000804be420 HPFAR:0000000000804be0 PAR:0000000000000000 [ 1406.959099] VCPU:0000000000000000 ]
CVE-2025-13042 1 Google 1 Chrome 2025-11-14 8.8 High
Inappropriate implementation in V8 in Google Chrome prior to 142.0.7444.166 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2025-8485 1 Lenovo 1 App Store 2025-11-14 7.3 High
An improper permissions vulnerability was reported in Lenovo App Store that could allow a local authenticated user to execute code with elevated privileges during installation of an application.
CVE-2025-40206 1 Linux 1 Linux Kernel 2025-11-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_objref: validate objref and objrefmap expressions Referencing a synproxy stateful object from OUTPUT hook causes kernel crash due to infinite recursive calls: BUG: TASK stack guard page was hit at 000000008bda5b8c (stack is 000000003ab1c4a5..00000000494d8b12) [...] Call Trace: __find_rr_leaf+0x99/0x230 fib6_table_lookup+0x13b/0x2d0 ip6_pol_route+0xa4/0x400 fib6_rule_lookup+0x156/0x240 ip6_route_output_flags+0xc6/0x150 __nf_ip6_route+0x23/0x50 synproxy_send_tcp_ipv6+0x106/0x200 synproxy_send_client_synack_ipv6+0x1aa/0x1f0 nft_synproxy_do_eval+0x263/0x310 nft_do_chain+0x5a8/0x5f0 [nf_tables nft_do_chain_inet+0x98/0x110 nf_hook_slow+0x43/0xc0 __ip6_local_out+0xf0/0x170 ip6_local_out+0x17/0x70 synproxy_send_tcp_ipv6+0x1a2/0x200 synproxy_send_client_synack_ipv6+0x1aa/0x1f0 [...] Implement objref and objrefmap expression validate functions. Currently, only NFT_OBJECT_SYNPROXY object type requires validation. This will also handle a jump to a chain using a synproxy object from the OUTPUT hook. Now when trying to reference a synproxy object in the OUTPUT hook, nft will produce the following error: synproxy_crash.nft: Error: Could not process rule: Operation not supported synproxy name mysynproxy ^^^^^^^^^^^^^^^^^^^^^^^^
CVE-2025-63419 1 Crushftp 1 Crushftp 2025-11-14 6.1 Medium
Cross Site Scripting (XSS) vulnerability in CrushFTP 11.3.6_48. The Web-Based Server has a feature where users can share files, the feature reflects the filename to an emailbody field with no sanitations leading to HTML Injection.
CVE-2025-25236 1 Omnissa 1 Workspace One 2025-11-14 5.3 Medium
Omnissa Workspace ONE UEM contains an observable response discrepancy vulnerability. A malicious actor may be able to enumerate sensitive information such as tenant ID and user accounts that could facilitate brute-force, password-spraying or credential-stuffing attacks.
CVE-2025-64482 1 Enalean 1 Tuleap 2025-11-14 4.6 Medium
Tuleap is an Open Source Suite to improve management of software developments and collaboration. Tuleap Community Edition prior to version 16.13.99.1762267347 and Tuleap Enterprise Edition prior to versions 17.01-, 16.13-6, and 16.12-9 don't have cross-site request forgery protections in the file release system. An attacker could use this vulnerability to trick victims into changing the commit rules or immutable tags of a SVN repo. Tuleap Community Edition 16.13.99.1762267347, Tuleap Enterprise Edition 17.0-1, Tuleap Enterprise Edition 16.13-6, and Tuleap Enterprise Edition 16.12-9 fix the issue.
CVE-2025-64117 1 Enalean 1 Tuleap 2025-11-14 4.6 Medium
Tuleap is an Open Source Suite to improve management of software developments and collaboration. Tuleap Community Edition prior to version 16.13.99.1761813675 and Tuleap Enterprise Edition prior to versions 16.13-5 and 16.12-8 don't have cross-site request forgery protection in the management of SVN commit rules and immutable tags. An attacker could use this vulnerability to trick victims into changing the commit rules or immutable tags of a SVN repo. Tuleap Community Edition 16.13.99.1761813675, Tuleap Enterprise Edition 16.13-5, and Tuleap Enterprise Edition 16.12-8 contain a fix for the issue.
CVE-2025-63929 2025-11-14 7.5 High
A null pointer dereference vulnerability exists in airpig2011 IEC104 thru Commit be6d841 (2019-07-08). When multiple threads enqueue elements concurrently via IEC10X_PrioEnQueue, the function may dereference a null or freed queue pointer, resulting in a segmentation fault and potential denial-of-service.
CVE-2025-63927 2025-11-14 4 Medium
A heap-use-after-free vulnerability exists in airpig2011 IEC104 thru Commit be6d841 (2019-07-08). During multi-threaded client execution, the function Iec10x_Scheduled can access memory that has already been freed, potentially causing program crashes or undefined behavior. This may be exploited to trigger a denial-of-service or memory corruption.
CVE-2025-59491 1 Centralsquare 1 Community Development 2025-11-14 6.1 Medium
Cross Site Scripting vulnerability in CentralSquare Community Development 19.5.7 via form fields.
CVE-2025-60646 2025-11-14 6.1 Medium
A stored cross-site scripting (XSS) in the Business Line Management module of Xxl-api v1.3.0 attackers to execute arbitrary web scripts or HTML via injecting a crafted payload into the Name parameter.
CVE-2025-57310 2025-11-14 8.8 High
A Cross-Site Request Forgery (CSRF) vulnerability in Salmen2/Simple-Faucet-Script v1.07 via crafted POST request to admin.php?p=ads&c=1 allowing attackers to execute arbitrary code.
CVE-2025-20378 1 Splunk 2 Splunk, Splunk Enterprise 2025-11-14 3.1 Low
In Splunk Enterprise versions below 10.0.1, 9.4.5, 9.3.7, 9.2.9, and Splunk Cloud Platform versions below 10.0.2503.5, 9.3.2411.111, and 9.3.2408.121, an unauthenticated attacker could craft a malicious URL using the `return_to` parameter of the Splunk Web login endpoint. When an authenticated user visits the malicious URL, it could cause an unvalidated redirect to an external malicious site. To be successful, the attacker has to trick the victim into initiating a request from their browser. The unauthenticated attacker should not be able to exploit the vulnerability at will.
CVE-2025-2843 1 Redhat 1 Cluster Observability Operator 2025-11-14 8.8 High
A flaw was found in the Observability Operator. The Operator creates a ServiceAccount with *ClusterRole* upon deployment of the *Namespace-Scoped* Custom Resource MonitorStack. This issue allows an adversarial Kubernetes Account with only namespaced-level roles, for example, a tenant controlling a namespace, to create a MonitorStack in the authorized namespace and then elevate permission to the cluster level by impersonating the ServiceAccount created by the Operator, resulting in privilege escalation and other issues.
CVE-2025-64099 1 Openidentityplatform 1 Openam 2025-11-14 N/A
Open Access Management (OpenAM) is an access management solution. In versions prior to 16.0.0, if the "claims_parameter_supported" parameter is activated, it is possible, thanks to the "oidc-claims-extension.groovy" script, to inject the value of one's choice into a claim contained in the id_token or in the user_info. In the request of an authorize function, a claims parameter containing a JSON file can be injected. This JSON file allows attackers to customize the claims returned by the "id_token" and "user_info" files. This allows for a very wide range of vulnerabilities depending on how clients use claims. For example, if some clients rely on an email field to identify a user, an attacker can choose the email address they want, and therefore assume any identity they choose. Version 16.0.0 fixes the issue.
CVE-2025-64429 1 Duckdb 1 Duckdb 2025-11-14 6.5 Medium
DuckDB is a SQL database management system. DuckDB implemented block-based encryption of DB on the filesystem starting with DuckDB 1.4.0. There are a few issues related to this implementation. The DuckDB can fall back to an insecure random number generator (pcg32) to generate cryptographic keys or IVs. When clearing keys from memory, the compiler may remove the memset() and leave sensitive data on the heap. By modifying the database header, an attacker could downgrade the encryption mode from GCM to CTR to bypass integrity checks. There may be a failure to check return value on call to OpenSSL `rand_bytes()`. An attacker could use public IVs to compromise the internal state of RNG and determine the randomly generated key used to encrypt temporary files, get access to cryptographic keys if they have access to process memory (e.g. through memory leak),circumvent GCM integrity checks, and/or influence the OpenSSL random number generator and DuckDB would not be able to detect a failure of the generator. Version 1.4.2 has disabled the insecure random number generator by no longer using the fallback to write to or create databases. Instead, DuckDB will now attempt to install and load the OpenSSL implementation in the `httpfs` extension. DuckDB now uses secure MbedTLS primitive to clear memory as recommended and requires explicit specification of ciphers without integrity checks like CTR on `ATTACH`. Additionally, DuckDB now checks the return code.
CVE-2025-64345 1 Bytecodealliance 1 Wasmtime 2025-11-14 1.8 Low
Wasmtime is a runtime for WebAssembly. Prior to version 38.0.4, 37.0.3, 36.0.3, and 24.0.5, Wasmtime's Rust embedder API contains an unsound interaction where a WebAssembly shared linear memory could be viewed as a type which provides safe access to the host (Rust) to the contents of the linear memory. This is not sound for shared linear memories, which could be modified in parallel, and this could lead to a data race in the host. Patch releases have been issued for all supported versions of Wasmtime, notably: 24.0.5, 36.0.3, 37.0.3, and 38.0.4. These releases reject creation of shared memories via `Memory::new` and shared memories are now excluded from core dumps. As a workaround, eembeddings affected by this issue should use `SharedMemory::new` instead of `Memory::new` to create shared memories. Affected embeddings should also disable core dumps if they are unable to upgrade. Note that core dumps are disabled by default but the wasm threads proposal (and shared memory) is enabled by default.