Filtered by vendor Redhat
Subscriptions
Filtered by product Enterprise Linux
Subscriptions
Total
15508 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-40997 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix memory leak on CPU EPP exit The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is not freed in the analogous exit function, so fix that. [ rjw: Subject and changelog edits ] | ||||
| CVE-2024-40965 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: i2c: lpi2c: Avoid calling clk_get_rate during transfer Instead of repeatedly calling clk_get_rate for each transfer, lock the clock rate and cache the value. A deadlock has been observed while adding tlv320aic32x4 audio codec to the system. When this clock provider adds its clock, the clk mutex is locked already, it needs to access i2c, which in return needs the mutex for clk_get_rate as well. | ||||
| CVE-2024-40936 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix memregion leaks in devm_cxl_add_region() Move the mode verification to __create_region() before allocating the memregion to avoid the memregion leaks. | ||||
| CVE-2024-40931 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure snd_una is properly initialized on connect This is strictly related to commit fb7a0d334894 ("mptcp: ensure snd_nxt is properly initialized on connect"). It turns out that syzkaller can trigger the retransmit after fallback and before processing any other incoming packet - so that snd_una is still left uninitialized. Address the issue explicitly initializing snd_una together with snd_nxt and write_seq. | ||||
| CVE-2024-40928 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: ethtool: fix the error condition in ethtool_get_phy_stats_ethtool() Clang static checker (scan-build) warning: net/ethtool/ioctl.c:line 2233, column 2 Called function pointer is null (null dereference). Return '-EOPNOTSUPP' when 'ops->get_ethtool_phy_stats' is NULL to fix this typo error. | ||||
| CVE-2024-40907 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ionic: fix kernel panic in XDP_TX action In the XDP_TX path, ionic driver sends a packet to the TX path with rx page and corresponding dma address. After tx is done, ionic_tx_clean() frees that page. But RX ring buffer isn't reset to NULL. So, it uses a freed page, which causes kernel panic. BUG: unable to handle page fault for address: ffff8881576c110c PGD 773801067 P4D 773801067 PUD 87f086067 PMD 87efca067 PTE 800ffffea893e060 Oops: Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN NOPTI CPU: 1 PID: 25 Comm: ksoftirqd/1 Not tainted 6.9.0+ #11 Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bpf_prog_f0b8caeac1068a55_balancer_ingress+0x3b/0x44f Code: 00 53 41 55 41 56 41 57 b8 01 00 00 00 48 8b 5f 08 4c 8b 77 00 4c 89 f7 48 83 c7 0e 48 39 d8 RSP: 0018:ffff888104e6fa28 EFLAGS: 00010283 RAX: 0000000000000002 RBX: ffff8881576c1140 RCX: 0000000000000002 RDX: ffffffffc0051f64 RSI: ffffc90002d33048 RDI: ffff8881576c110e RBP: ffff888104e6fa88 R08: 0000000000000000 R09: ffffed1027a04a23 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8881b03a21a8 R13: ffff8881589f800f R14: ffff8881576c1100 R15: 00000001576c1100 FS: 0000000000000000(0000) GS:ffff88881ae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff8881576c110c CR3: 0000000767a90000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x254/0x790 ? __pfx_page_fault_oops+0x10/0x10 ? __pfx_is_prefetch.constprop.0+0x10/0x10 ? search_bpf_extables+0x165/0x260 ? fixup_exception+0x4a/0x970 ? exc_page_fault+0xcb/0xe0 ? asm_exc_page_fault+0x22/0x30 ? 0xffffffffc0051f64 ? bpf_prog_f0b8caeac1068a55_balancer_ingress+0x3b/0x44f ? do_raw_spin_unlock+0x54/0x220 ionic_rx_service+0x11ab/0x3010 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ? ionic_tx_clean+0x29b/0xc60 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ? __pfx_ionic_tx_clean+0x10/0x10 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ? __pfx_ionic_rx_service+0x10/0x10 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ? ionic_tx_cq_service+0x25d/0xa00 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ? __pfx_ionic_rx_service+0x10/0x10 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ionic_cq_service+0x69/0x150 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] ionic_txrx_napi+0x11a/0x540 [ionic 9180c3001ab627d82bbc5f3ebe8a0decaf6bb864] __napi_poll.constprop.0+0xa0/0x440 net_rx_action+0x7e7/0xc30 ? __pfx_net_rx_action+0x10/0x10 | ||||
| CVE-2024-40906 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Always stop health timer during driver removal Currently, if teardown_hca fails to execute during driver removal, mlx5 does not stop the health timer. Afterwards, mlx5 continue with driver teardown. This may lead to a UAF bug, which results in page fault Oops[1], since the health timer invokes after resources were freed. Hence, stop the health monitor even if teardown_hca fails. [1] mlx5_core 0000:18:00.0: E-Switch: Unload vfs: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: cleanup mlx5_core 0000:18:00.0: wait_func:1155:(pid 1967079): TEARDOWN_HCA(0x103) timeout. Will cause a leak of a command resource mlx5_core 0000:18:00.0: mlx5_function_close:1288:(pid 1967079): tear_down_hca failed, skip cleanup BUG: unable to handle page fault for address: ffffa26487064230 PGD 100c00067 P4D 100c00067 PUD 100e5a067 PMD 105ed7067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Tainted: G OE ------- --- 6.7.0-68.fc38.x86_64 #1 Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0013.121520200651 12/15/2020 RIP: 0010:ioread32be+0x34/0x60 RSP: 0018:ffffa26480003e58 EFLAGS: 00010292 RAX: ffffa26487064200 RBX: ffff9042d08161a0 RCX: ffff904c108222c0 RDX: 000000010bbf1b80 RSI: ffffffffc055ddb0 RDI: ffffa26487064230 RBP: ffff9042d08161a0 R08: 0000000000000022 R09: ffff904c108222e8 R10: 0000000000000004 R11: 0000000000000441 R12: ffffffffc055ddb0 R13: ffffa26487064200 R14: ffffa26480003f00 R15: ffff904c108222c0 FS: 0000000000000000(0000) GS:ffff904c10800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffa26487064230 CR3: 00000002c4420006 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x175/0x180 ? asm_exc_page_fault+0x26/0x30 ? __pfx_poll_health+0x10/0x10 [mlx5_core] ? __pfx_poll_health+0x10/0x10 [mlx5_core] ? ioread32be+0x34/0x60 mlx5_health_check_fatal_sensors+0x20/0x100 [mlx5_core] ? __pfx_poll_health+0x10/0x10 [mlx5_core] poll_health+0x42/0x230 [mlx5_core] ? __next_timer_interrupt+0xbc/0x110 ? __pfx_poll_health+0x10/0x10 [mlx5_core] call_timer_fn+0x21/0x130 ? __pfx_poll_health+0x10/0x10 [mlx5_core] __run_timers+0x222/0x2c0 run_timer_softirq+0x1d/0x40 __do_softirq+0xc9/0x2c8 __irq_exit_rcu+0xa6/0xc0 sysvec_apic_timer_interrupt+0x72/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:cpuidle_enter_state+0xcc/0x440 ? cpuidle_enter_state+0xbd/0x440 cpuidle_enter+0x2d/0x40 do_idle+0x20d/0x270 cpu_startup_entry+0x2a/0x30 rest_init+0xd0/0xd0 arch_call_rest_init+0xe/0x30 start_kernel+0x709/0xa90 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x96/0xa0 secondary_startup_64_no_verify+0x18f/0x19b ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2024-40905 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: fix possible race in __fib6_drop_pcpu_from() syzbot found a race in __fib6_drop_pcpu_from() [1] If compiler reads more than once (*ppcpu_rt), second read could read NULL, if another cpu clears the value in rt6_get_pcpu_route(). Add a READ_ONCE() to prevent this race. Also add rcu_read_lock()/rcu_read_unlock() because we rely on RCU protection while dereferencing pcpu_rt. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000012: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000090-0x0000000000000097] CPU: 0 PID: 7543 Comm: kworker/u8:17 Not tainted 6.10.0-rc1-syzkaller-00013-g2bfcfd584ff5 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Workqueue: netns cleanup_net RIP: 0010:__fib6_drop_pcpu_from.part.0+0x10a/0x370 net/ipv6/ip6_fib.c:984 Code: f8 48 c1 e8 03 80 3c 28 00 0f 85 16 02 00 00 4d 8b 3f 4d 85 ff 74 31 e8 74 a7 fa f7 49 8d bf 90 00 00 00 48 89 f8 48 c1 e8 03 <80> 3c 28 00 0f 85 1e 02 00 00 49 8b 87 90 00 00 00 48 8b 0c 24 48 RSP: 0018:ffffc900040df070 EFLAGS: 00010206 RAX: 0000000000000012 RBX: 0000000000000001 RCX: ffffffff89932e16 RDX: ffff888049dd1e00 RSI: ffffffff89932d7c RDI: 0000000000000091 RBP: dffffc0000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000001 R11: 0000000000000006 R12: ffff88807fa080b8 R13: fffffbfff1a9a07d R14: ffffed100ff41022 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32c26000 CR3: 000000005d56e000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __fib6_drop_pcpu_from net/ipv6/ip6_fib.c:966 [inline] fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1027 [inline] fib6_purge_rt+0x7f2/0x9f0 net/ipv6/ip6_fib.c:1038 fib6_del_route net/ipv6/ip6_fib.c:1998 [inline] fib6_del+0xa70/0x17b0 net/ipv6/ip6_fib.c:2043 fib6_clean_node+0x426/0x5b0 net/ipv6/ip6_fib.c:2205 fib6_walk_continue+0x44f/0x8d0 net/ipv6/ip6_fib.c:2127 fib6_walk+0x182/0x370 net/ipv6/ip6_fib.c:2175 fib6_clean_tree+0xd7/0x120 net/ipv6/ip6_fib.c:2255 __fib6_clean_all+0x100/0x2d0 net/ipv6/ip6_fib.c:2271 rt6_sync_down_dev net/ipv6/route.c:4906 [inline] rt6_disable_ip+0x7ed/0xa00 net/ipv6/route.c:4911 addrconf_ifdown.isra.0+0x117/0x1b40 net/ipv6/addrconf.c:3855 addrconf_notify+0x223/0x19e0 net/ipv6/addrconf.c:3778 notifier_call_chain+0xb9/0x410 kernel/notifier.c:93 call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:1992 call_netdevice_notifiers_extack net/core/dev.c:2030 [inline] call_netdevice_notifiers net/core/dev.c:2044 [inline] dev_close_many+0x333/0x6a0 net/core/dev.c:1585 unregister_netdevice_many_notify+0x46d/0x19f0 net/core/dev.c:11193 unregister_netdevice_many net/core/dev.c:11276 [inline] default_device_exit_batch+0x85b/0xae0 net/core/dev.c:11759 ops_exit_list+0x128/0x180 net/core/net_namespace.c:178 cleanup_net+0x5b7/0xbf0 net/core/net_namespace.c:640 process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xf70 kernel/workqueue.c:3393 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 | ||||
| CVE-2024-40901 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Avoid test/set_bit() operating in non-allocated memory There is a potential out-of-bounds access when using test_bit() on a single word. The test_bit() and set_bit() functions operate on long values, and when testing or setting a single word, they can exceed the word boundary. KASAN detects this issue and produces a dump: BUG: KASAN: slab-out-of-bounds in _scsih_add_device.constprop.0 (./arch/x86/include/asm/bitops.h:60 ./include/asm-generic/bitops/instrumented-atomic.h:29 drivers/scsi/mpt3sas/mpt3sas_scsih.c:7331) mpt3sas Write of size 8 at addr ffff8881d26e3c60 by task kworker/u1536:2/2965 For full log, please look at [1]. Make the allocation at least the size of sizeof(unsigned long) so that set_bit() and test_bit() have sufficient room for read/write operations without overwriting unallocated memory. [1] Link: https://lore.kernel.org/all/ZkNcALr3W3KGYYJG@gmail.com/ | ||||
| CVE-2024-39504 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_inner: validate mandatory meta and payload Check for mandatory netlink attributes in payload and meta expression when used embedded from the inner expression, otherwise NULL pointer dereference is possible from userspace. | ||||
| CVE-2024-39498 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/mst: Fix NULL pointer dereference at drm_dp_add_payload_part2 [Why] Commit: - commit 5aa1dfcdf0a4 ("drm/mst: Refactor the flow for payload allocation/removement") accidently overwrite the commit - commit 54d217406afe ("drm: use mgr->dev in drm_dbg_kms in drm_dp_add_payload_part2") which cause regression. [How] Recover the original NULL fix and remove the unnecessary input parameter 'state' for drm_dp_add_payload_part2(). (cherry picked from commit 4545614c1d8da603e57b60dd66224d81b6ffc305) | ||||
| CVE-2024-39487 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: bonding: Fix out-of-bounds read in bond_option_arp_ip_targets_set() In function bond_option_arp_ip_targets_set(), if newval->string is an empty string, newval->string+1 will point to the byte after the string, causing an out-of-bound read. BUG: KASAN: slab-out-of-bounds in strlen+0x7d/0xa0 lib/string.c:418 Read of size 1 at addr ffff8881119c4781 by task syz-executor665/8107 CPU: 1 PID: 8107 Comm: syz-executor665 Not tainted 6.7.0-rc7 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:364 [inline] print_report+0xc1/0x5e0 mm/kasan/report.c:475 kasan_report+0xbe/0xf0 mm/kasan/report.c:588 strlen+0x7d/0xa0 lib/string.c:418 __fortify_strlen include/linux/fortify-string.h:210 [inline] in4_pton+0xa3/0x3f0 net/core/utils.c:130 bond_option_arp_ip_targets_set+0xc2/0x910 drivers/net/bonding/bond_options.c:1201 __bond_opt_set+0x2a4/0x1030 drivers/net/bonding/bond_options.c:767 __bond_opt_set_notify+0x48/0x150 drivers/net/bonding/bond_options.c:792 bond_opt_tryset_rtnl+0xda/0x160 drivers/net/bonding/bond_options.c:817 bonding_sysfs_store_option+0xa1/0x120 drivers/net/bonding/bond_sysfs.c:156 dev_attr_store+0x54/0x80 drivers/base/core.c:2366 sysfs_kf_write+0x114/0x170 fs/sysfs/file.c:136 kernfs_fop_write_iter+0x337/0x500 fs/kernfs/file.c:334 call_write_iter include/linux/fs.h:2020 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x96a/0xd80 fs/read_write.c:584 ksys_write+0x122/0x250 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x40/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b ---[ end trace ]--- Fix it by adding a check of string length before using it. | ||||
| CVE-2024-39486 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/drm_file: Fix pid refcounting race <maarten.lankhorst@linux.intel.com>, Maxime Ripard <mripard@kernel.org>, Thomas Zimmermann <tzimmermann@suse.de> filp->pid is supposed to be a refcounted pointer; however, before this patch, drm_file_update_pid() only increments the refcount of a struct pid after storing a pointer to it in filp->pid and dropping the dev->filelist_mutex, making the following race possible: process A process B ========= ========= begin drm_file_update_pid mutex_lock(&dev->filelist_mutex) rcu_replace_pointer(filp->pid, <pid B>, 1) mutex_unlock(&dev->filelist_mutex) begin drm_file_update_pid mutex_lock(&dev->filelist_mutex) rcu_replace_pointer(filp->pid, <pid A>, 1) mutex_unlock(&dev->filelist_mutex) get_pid(<pid A>) synchronize_rcu() put_pid(<pid B>) *** pid B reaches refcount 0 and is freed here *** get_pid(<pid B>) *** UAF *** synchronize_rcu() put_pid(<pid A>) As far as I know, this race can only occur with CONFIG_PREEMPT_RCU=y because it requires RCU to detect a quiescent state in code that is not explicitly calling into the scheduler. This race leads to use-after-free of a "struct pid". It is probably somewhat hard to hit because process A has to pass through a synchronize_rcu() operation while process B is between mutex_unlock() and get_pid(). Fix it by ensuring that by the time a pointer to the current task's pid is stored in the file, an extra reference to the pid has been taken. This fix also removes the condition for synchronize_rcu(); I think that optimization is unnecessary complexity, since in that case we would usually have bailed out on the lockless check above. | ||||
| CVE-2024-39483 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked When requesting an NMI window, WARN on vNMI support being enabled if and only if NMIs are actually masked, i.e. if the vCPU is already handling an NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of view) is to inject one NMI and pend the other. When using vNMI, KVM pends the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected). However, if KVM can't immediately inject an NMI, e.g. because the vCPU is in an STI shadow or is running with GIF=0, then KVM will request an NMI window and trigger the WARN (but still function correctly). Whether or not the GIF=0 case makes sense is debatable, as the intent of KVM's behavior is to provide functionality that is as close to real hardware as possible. E.g. if two NMIs are sent in quick succession, the probability of both NMIs arriving in an STI shadow is infinitesimally low on real hardware, but significantly larger in a virtual environment, e.g. if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't as clear cut, because the window where two NMIs can collide is much larger in bare metal (though still small). That said, KVM should not have divergent behavior for the GIF=0 case based on whether or not vNMI support is enabled. And KVM has allowed simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400 ("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be modified without a *really* good reason to do so, and if KVM's behavior were to be modified, it should be done irrespective of vNMI support. | ||||
| CVE-2024-39473 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension If a process module does not have base config extension then the same format applies to all of it's inputs and the process->base_config_ext is NULL, causing NULL dereference when specifically crafted topology and sequences used. | ||||
| CVE-2024-39472 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: xfs: fix log recovery buffer allocation for the legacy h_size fixup Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer. Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation. | ||||
| CVE-2024-38608 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2024-38605 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 8.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: core: Fix NULL module pointer assignment at card init The commit 81033c6b584b ("ALSA: core: Warn on empty module") introduced a WARN_ON() for a NULL module pointer passed at snd_card object creation, and it also wraps the code around it with '#ifdef MODULE'. This works in most cases, but the devils are always in details. "MODULE" is defined when the target code (i.e. the sound core) is built as a module; but this doesn't mean that the caller is also built-in or not. Namely, when only the sound core is built-in (CONFIG_SND=y) while the driver is a module (CONFIG_SND_USB_AUDIO=m), the passed module pointer is ignored even if it's non-NULL, and card->module remains as NULL. This would result in the missing module reference up/down at the device open/close, leading to a race with the code execution after the module removal. For addressing the bug, move the assignment of card->module again out of ifdef. The WARN_ON() is still wrapped with ifdef because the module can be really NULL when all sound drivers are built-in. Note that we keep 'ifdef MODULE' for WARN_ON(), otherwise it would lead to a false-positive NULL module check. Admittedly it won't catch perfectly, i.e. no check is performed when CONFIG_SND=y. But, it's no real problem as it's only for debugging, and the condition is pretty rare. | ||||
| CVE-2024-38573 | 2 Linux, Redhat | 4 Acrn, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 7.5 High |
| In the Linux kernel, the following vulnerability has been resolved: cppc_cpufreq: Fix possible null pointer dereference cppc_cpufreq_get_rate() and hisi_cppc_cpufreq_get_rate() can be called from different places with various parameters. So cpufreq_cpu_get() can return null as 'policy' in some circumstances. Fix this bug by adding null return check. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
| CVE-2024-38570 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace. This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead. | ||||