Filtered by vendor Redhat Subscriptions
Filtered by product Enterprise Linux Subscriptions
Total 15507 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-50027 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: core: Free tzp copy along with the thermal zone The object pointed to by tz->tzp may still be accessed after being freed in thermal_zone_device_unregister(), so move the freeing of it to the point after the removal completion has been completed at which it cannot be accessed any more.
CVE-2024-50023 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: phy: Remove LED entry from LEDs list on unregister Commit c938ab4da0eb ("net: phy: Manual remove LEDs to ensure correct ordering") correctly fixed a problem with using devm_ but missed removing the LED entry from the LEDs list. This cause kernel panic on specific scenario where the port for the PHY is torn down and up and the kmod for the PHY is removed. On setting the port down the first time, the assosiacted LEDs are correctly unregistered. The associated kmod for the PHY is now removed. The kmod is now added again and the port is now put up, the associated LED are registered again. On putting the port down again for the second time after these step, the LED list now have 4 elements. With the first 2 already unregistered previously and the 2 new one registered again. This cause a kernel panic as the first 2 element should have been removed. Fix this by correctly removing the element when LED is unregistered.
CVE-2024-50009 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-49999 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: afs: Fix the setting of the server responding flag In afs_wait_for_operation(), we set transcribe the call responded flag to the server record that we used after doing the fileserver iteration loop - but it's possible to exit the loop having had a response from the server that we've discarded (e.g. it returned an abort or we started receiving data, but the call didn't complete). This means that op->server might be NULL, but we don't check that before attempting to set the server flag.
CVE-2024-49971 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Increase array size of dummy_boolean [WHY] dml2_core_shared_mode_support and dml_core_mode_support access the third element of dummy_boolean, i.e. hw_debug5 = &s->dummy_boolean[2], when dummy_boolean has size of 2. Any assignment to hw_debug5 causes an OVERRUN. [HOW] Increase dummy_boolean's array size to 3. This fixes 2 OVERRUN issues reported by Coverity.
CVE-2024-49968 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: filesystems without casefold feature cannot be mounted with siphash When mounting the ext4 filesystem, if the default hash version is set to DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting.
CVE-2024-49904 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add list empty check to avoid null pointer issue Add list empty check to avoid null pointer issues in some corner cases. - list_for_each_entry_safe()
CVE-2024-49888 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a sdiv overflow issue Zac Ecob reported a problem where a bpf program may cause kernel crash due to the following error: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI The failure is due to the below signed divide: LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808. LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808, but it is impossible since for 64-bit system, the maximum positive number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is LLONG_MIN. Further investigation found all the following sdiv/smod cases may trigger an exception when bpf program is running on x86_64 platform: - LLONG_MIN/-1 for 64bit operation - INT_MIN/-1 for 32bit operation - LLONG_MIN%-1 for 64bit operation - INT_MIN%-1 for 32bit operation where -1 can be an immediate or in a register. On arm64, there are no exceptions: - LLONG_MIN/-1 = LLONG_MIN - INT_MIN/-1 = INT_MIN - LLONG_MIN%-1 = 0 - INT_MIN%-1 = 0 where -1 can be an immediate or in a register. Insn patching is needed to handle the above cases and the patched codes produced results aligned with above arm64 result. The below are pseudo codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0 and the divisor is stored in a register. sdiv: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L2 if tmp == 0 goto L1 rY = 0 L1: rY = -rY; goto L3 L2: rY /= rX L3: smod: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L1 if tmp == 1 (is64 ? goto L2 : goto L3) rY = 0; goto L2 L1: rY %= rX L2: goto L4 // only when !is64 L3: wY = wY // only when !is64 L4: [1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/
CVE-2024-49885 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm, slub: avoid zeroing kmalloc redzone Since commit 946fa0dbf2d8 ("mm/slub: extend redzone check to extra allocated kmalloc space than requested"), setting orig_size treats the wasted space (object_size - orig_size) as a redzone. However with init_on_free=1 we clear the full object->size, including the redzone. Additionally we clear the object metadata, including the stored orig_size, making it zero, which makes check_object() treat the whole object as a redzone. These issues lead to the following BUG report with "slub_debug=FUZ init_on_free=1": [ 0.000000] ============================================================================= [ 0.000000] BUG kmalloc-8 (Not tainted): kmalloc Redzone overwritten [ 0.000000] ----------------------------------------------------------------------------- [ 0.000000] [ 0.000000] 0xffff000010032858-0xffff00001003285f @offset=2136. First byte 0x0 instead of 0xcc [ 0.000000] FIX kmalloc-8: Restoring kmalloc Redzone 0xffff000010032858-0xffff00001003285f=0xcc [ 0.000000] Slab 0xfffffdffc0400c80 objects=36 used=23 fp=0xffff000010032a18 flags=0x3fffe0000000200(workingset|node=0|zone=0|lastcpupid=0x1ffff) [ 0.000000] Object 0xffff000010032858 @offset=2136 fp=0xffff0000100328c8 [ 0.000000] [ 0.000000] Redzone ffff000010032850: cc cc cc cc cc cc cc cc ........ [ 0.000000] Object ffff000010032858: cc cc cc cc cc cc cc cc ........ [ 0.000000] Redzone ffff000010032860: cc cc cc cc cc cc cc cc ........ [ 0.000000] Padding ffff0000100328b4: 00 00 00 00 00 00 00 00 00 00 00 00 ............ [ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.11.0-rc3-next-20240814-00004-g61844c55c3f4 #144 [ 0.000000] Hardware name: NXP i.MX95 19X19 board (DT) [ 0.000000] Call trace: [ 0.000000] dump_backtrace+0x90/0xe8 [ 0.000000] show_stack+0x18/0x24 [ 0.000000] dump_stack_lvl+0x74/0x8c [ 0.000000] dump_stack+0x18/0x24 [ 0.000000] print_trailer+0x150/0x218 [ 0.000000] check_object+0xe4/0x454 [ 0.000000] free_to_partial_list+0x2f8/0x5ec To address the issue, use orig_size to clear the used area. And restore the value of orig_size after clear the remaining area. When CONFIG_SLUB_DEBUG not defined, (get_orig_size()' directly returns s->object_size. So when using memset to init the area, the size can simply be orig_size, as orig_size returns object_size when CONFIG_SLUB_DEBUG not enabled. And orig_size can never be bigger than object_size.
CVE-2024-49862 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: powercap: intel_rapl: Fix off by one in get_rpi() The rp->priv->rpi array is either rpi_msr or rpi_tpmi which have NR_RAPL_PRIMITIVES number of elements. Thus the > needs to be >= to prevent an off by one access.
CVE-2024-47719 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: iommufd: Protect against overflow of ALIGN() during iova allocation Userspace can supply an iova and uptr such that the target iova alignment becomes really big and ALIGN() overflows which corrupts the selected area range during allocation. CONFIG_IOMMUFD_TEST can detect this: WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline] WARNING: CPU: 1 PID: 5092 at drivers/iommu/iommufd/io_pagetable.c:268 iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352 Modules linked in: CPU: 1 PID: 5092 Comm: syz-executor294 Not tainted 6.10.0-rc5-syzkaller-00294-g3ffea9a7a6f7 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024 RIP: 0010:iopt_alloc_area_pages drivers/iommu/iommufd/io_pagetable.c:268 [inline] RIP: 0010:iopt_map_pages+0xf95/0x1050 drivers/iommu/iommufd/io_pagetable.c:352 Code: fc e9 a4 f3 ff ff e8 1a 8b 4c fc 41 be e4 ff ff ff e9 8a f3 ff ff e8 0a 8b 4c fc 90 0f 0b 90 e9 37 f5 ff ff e8 fc 8a 4c fc 90 <0f> 0b 90 e9 68 f3 ff ff 48 c7 c1 ec 82 ad 8f 80 e1 07 80 c1 03 38 RSP: 0018:ffffc90003ebf9e0 EFLAGS: 00010293 RAX: ffffffff85499fa4 RBX: 00000000ffffffef RCX: ffff888079b49e00 RDX: 0000000000000000 RSI: 00000000ffffffef RDI: 0000000000000000 RBP: ffffc90003ebfc50 R08: ffffffff85499b30 R09: ffffffff85499942 R10: 0000000000000002 R11: ffff888079b49e00 R12: ffff8880228e0010 R13: 0000000000000000 R14: 1ffff920007d7f68 R15: ffffc90003ebfd00 FS: 000055557d760380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000005fdeb8 CR3: 000000007404a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> iommufd_ioas_copy+0x610/0x7b0 drivers/iommu/iommufd/ioas.c:274 iommufd_fops_ioctl+0x4d9/0x5a0 drivers/iommu/iommufd/main.c:421 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Cap the automatic alignment to the huge page size, which is probably a better idea overall. Huge automatic alignments can fragment and chew up the available IOVA space without any reason.
CVE-2024-47715 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7915: fix oops on non-dbdc mt7986 mt7915_band_config() sets band_idx = 1 on the main phy for mt7986 with MT7975_ONE_ADIE or MT7976_ONE_ADIE. Commit 0335c034e726 ("wifi: mt76: fix race condition related to checking tx queue fill status") introduced a dereference of the phys array indirectly indexed by band_idx via wcid->phy_idx in mt76_wcid_cleanup(). This caused the following Oops on affected mt7986 devices: Unable to handle kernel read from unreadable memory at virtual address 0000000000000024 Mem abort info: ESR = 0x0000000096000005 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x05: level 1 translation fault Data abort info: ISV = 0, ISS = 0x00000005 CM = 0, WnR = 0 user pgtable: 4k pages, 39-bit VAs, pgdp=0000000042545000 [0000000000000024] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 Internal error: Oops: 0000000096000005 [#1] SMP Modules linked in: ... mt7915e mt76_connac_lib mt76 mac80211 cfg80211 ... CPU: 2 PID: 1631 Comm: hostapd Not tainted 5.15.150 #0 Hardware name: ZyXEL EX5700 (Telenor) (DT) pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mt76_wcid_cleanup+0x84/0x22c [mt76] lr : mt76_wcid_cleanup+0x64/0x22c [mt76] sp : ffffffc00a803700 x29: ffffffc00a803700 x28: ffffff80008f7300 x27: ffffff80003f3c00 x26: ffffff80000a7880 x25: ffffffc008c26e00 x24: 0000000000000001 x23: ffffffc000a68114 x22: 0000000000000000 x21: ffffff8004172cc8 x20: ffffffc00a803748 x19: ffffff8004152020 x18: 0000000000000000 x17: 00000000000017c0 x16: ffffffc008ef5000 x15: 0000000000000be0 x14: ffffff8004172e28 x13: ffffff8004172e28 x12: 0000000000000000 x11: 0000000000000000 x10: ffffff8004172e30 x9 : ffffff8004172e28 x8 : 0000000000000000 x7 : ffffff8004156020 x6 : 0000000000000000 x5 : 0000000000000031 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : ffffff80008f7300 x0 : 0000000000000024 Call trace: mt76_wcid_cleanup+0x84/0x22c [mt76] __mt76_sta_remove+0x70/0xbc [mt76] mt76_sta_state+0x8c/0x1a4 [mt76] mt7915_eeprom_get_power_delta+0x11e4/0x23a0 [mt7915e] drv_sta_state+0x144/0x274 [mac80211] sta_info_move_state+0x1cc/0x2a4 [mac80211] sta_set_sinfo+0xaf8/0xc24 [mac80211] sta_info_destroy_addr_bss+0x4c/0x6c [mac80211] ieee80211_color_change_finish+0x1c08/0x1e70 [mac80211] cfg80211_check_station_change+0x1360/0x4710 [cfg80211] genl_family_rcv_msg_doit+0xb4/0x110 genl_rcv_msg+0xd0/0x1bc netlink_rcv_skb+0x58/0x120 genl_rcv+0x34/0x50 netlink_unicast+0x1f0/0x2ec netlink_sendmsg+0x198/0x3d0 ____sys_sendmsg+0x1b0/0x210 ___sys_sendmsg+0x80/0xf0 __sys_sendmsg+0x44/0xa0 __arm64_sys_sendmsg+0x20/0x30 invoke_syscall.constprop.0+0x4c/0xe0 do_el0_svc+0x40/0xd0 el0_svc+0x14/0x4c el0t_64_sync_handler+0x100/0x110 el0t_64_sync+0x15c/0x160 Code: d2800002 910092c0 52800023 f9800011 (885f7c01) ---[ end trace 7e42dd9a39ed2281 ]--- Fix by using mt76_dev_phy() which will map band_idx to the correct phy for all hardware combinations.
CVE-2024-47703 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned.
CVE-2024-47700 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: check stripe size compatibility on remount as well We disable stripe size in __ext4_fill_super if it is not a multiple of the cluster ratio however this check is missed when trying to remount. This can leave us with cases where stripe < cluster_ratio after remount:set making EXT4_B2C(sbi->s_stripe) become 0 that can cause some unforeseen bugs like divide by 0. Fix that by adding the check in remount path as well.
CVE-2024-47687 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa/mlx5: Fix invalid mr resource destroy Certain error paths from mlx5_vdpa_dev_add() can end up releasing mr resources which never got initialized in the first place. This patch adds the missing check in mlx5_vdpa_destroy_mr_resources() to block releasing non-initialized mr resources. Reference trace: mlx5_core 0000:08:00.2: mlx5_vdpa_dev_add:3274:(pid 2700) warning: No mac address provisioned? BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 140216067 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 8 PID: 2700 Comm: vdpa Kdump: loaded Not tainted 5.14.0-496.el9.x86_64 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:vhost_iotlb_del_range+0xf/0xe0 [vhost_iotlb] Code: [...] RSP: 0018:ff1c823ac23077f0 EFLAGS: 00010246 RAX: ffffffffc1a21a60 RBX: ffffffff899567a0 RCX: 0000000000000000 RDX: ffffffffffffffff RSI: 0000000000000000 RDI: 0000000000000000 RBP: ff1bda1f7c21e800 R08: 0000000000000000 R09: ff1c823ac2307670 R10: ff1c823ac2307668 R11: ffffffff8a9e7b68 R12: 0000000000000000 R13: 0000000000000000 R14: ff1bda1f43e341a0 R15: 00000000ffffffea FS: 00007f56eba7c740(0000) GS:ff1bda269f800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000104d90001 CR4: 0000000000771ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? mlx5_vdpa_free+0x3d/0x150 [mlx5_vdpa] ? __die_body.cold+0x8/0xd ? page_fault_oops+0x134/0x170 ? __irq_work_queue_local+0x2b/0xc0 ? irq_work_queue+0x2c/0x50 ? exc_page_fault+0x62/0x150 ? asm_exc_page_fault+0x22/0x30 ? __pfx_mlx5_vdpa_free+0x10/0x10 [mlx5_vdpa] ? vhost_iotlb_del_range+0xf/0xe0 [vhost_iotlb] mlx5_vdpa_free+0x3d/0x150 [mlx5_vdpa] vdpa_release_dev+0x1e/0x50 [vdpa] device_release+0x31/0x90 kobject_cleanup+0x37/0x130 mlx5_vdpa_dev_add+0x2d2/0x7a0 [mlx5_vdpa] vdpa_nl_cmd_dev_add_set_doit+0x277/0x4c0 [vdpa] genl_family_rcv_msg_doit+0xd9/0x130 genl_family_rcv_msg+0x14d/0x220 ? __pfx_vdpa_nl_cmd_dev_add_set_doit+0x10/0x10 [vdpa] ? _copy_to_user+0x1a/0x30 ? move_addr_to_user+0x4b/0xe0 genl_rcv_msg+0x47/0xa0 ? __import_iovec+0x46/0x150 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x245/0x370 netlink_sendmsg+0x206/0x440 __sys_sendto+0x1dc/0x1f0 ? do_read_fault+0x10c/0x1d0 ? do_pte_missing+0x10d/0x190 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x5c/0xf0 ? __count_memcg_events+0x4f/0xb0 ? mm_account_fault+0x6c/0x100 ? handle_mm_fault+0x116/0x270 ? do_user_addr_fault+0x1d6/0x6a0 ? do_syscall_64+0x6b/0xf0 ? clear_bhb_loop+0x25/0x80 ? clear_bhb_loop+0x25/0x80 ? clear_bhb_loop+0x25/0x80 ? clear_bhb_loop+0x25/0x80 ? clear_bhb_loop+0x25/0x80 entry_SYSCALL_64_after_hwframe+0x78/0x80
CVE-2024-47675 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix use-after-free in bpf_uprobe_multi_link_attach() If bpf_link_prime() fails, bpf_uprobe_multi_link_attach() goes to the error_free label and frees the array of bpf_uprobe's without calling bpf_uprobe_unregister(). This leaks bpf_uprobe->uprobe and worse, this frees bpf_uprobe->consumer without removing it from the uprobe->consumers list.
CVE-2024-46864 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/hyperv: fix kexec crash due to VP assist page corruption commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline") introduces a new cpuhp state for hyperv initialization. cpuhp_setup_state() returns the state number if state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states. For the hyperv case, since a new cpuhp state was introduced it would return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and so hv_cpu_die() won't be called on all CPUs. This means the VP assist page won't be reset. When the kexec kernel tries to setup the VP assist page again, the hypervisor corrupts the memory region of the old VP assist page causing a panic in case the kexec kernel is using that memory elsewhere. This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec panic/hang issues"). Get rid of hyperv_init_cpuhp entirely since we are no longer using a dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with cpuhp_remove_state().
CVE-2024-46824 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Require drivers to supply the cache_invalidate_user ops If drivers don't do this then iommufd will oops invalidation ioctls with something like: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Mem abort info: ESR = 0x0000000086000004 EC = 0x21: IABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101059000 [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP Modules linked in: CPU: 2 PID: 371 Comm: qemu-system-aar Not tainted 6.8.0-rc7-gde77230ac23a #9 Hardware name: linux,dummy-virt (DT) pstate: 81400809 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=-c) pc : 0x0 lr : iommufd_hwpt_invalidate+0xa4/0x204 sp : ffff800080f3bcc0 x29: ffff800080f3bcf0 x28: ffff0000c369b300 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: 0000000000000000 x22: 00000000c1e334a0 x21: ffff0000c1e334a0 x20: ffff800080f3bd38 x19: ffff800080f3bd58 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffff8240d6d8 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000001000000002 x7 : 0000fffeac1ec950 x6 : 0000000000000000 x5 : ffff800080f3bd78 x4 : 0000000000000003 x3 : 0000000000000002 x2 : 0000000000000000 x1 : ffff800080f3bcc8 x0 : ffff0000c6034d80 Call trace: 0x0 iommufd_fops_ioctl+0x154/0x274 __arm64_sys_ioctl+0xac/0xf0 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xb4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x190/0x194 All existing drivers implement this op for nesting, this is mostly a bisection aid.
CVE-2024-46820 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/vcn: remove irq disabling in vcn 5 suspend We do not directly enable/disable VCN IRQ in vcn 5.0.0. And we do not handle the IRQ state as well. So the calls to disable IRQ and set state are removed. This effectively gets rid of the warining of "WARN_ON(!amdgpu_irq_enabled(adev, src, type))" in amdgpu_irq_put().
CVE-2024-46787 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix checks for huge PMDs Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2. The pmd_trans_huge() code in mfill_atomic() is wrong in three different ways depending on kernel version: 1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit the right two race windows) - I've tested this in a kernel build with some extra mdelay() calls. See the commit message for a description of the race scenario. On older kernels (before 6.5), I think the same bug can even theoretically lead to accessing transhuge page contents as a page table if you hit the right 5 narrow race windows (I haven't tested this case). 2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for detecting PMDs that don't point to page tables. On older kernels (before 6.5), you'd just have to win a single fairly wide race to hit this. I've tested this on 6.1 stable by racing migration (with a mdelay() patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86 VM, that causes a kernel oops in ptlock_ptr(). 3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed to yank page tables out from under us (though I haven't tested that), so I think the BUG_ON() checks in mfill_atomic() are just wrong. I decided to write two separate fixes for these (one fix for bugs 1+2, one fix for bug 3), so that the first fix can be backported to kernels affected by bugs 1+2. This patch (of 2): This fixes two issues. I discovered that the following race can occur: mfill_atomic other thread ============ ============ <zap PMD> pmdp_get_lockless() [reads none pmd] <bail if trans_huge> <if none:> <pagefault creates transhuge zeropage> __pte_alloc [no-op] <zap PMD> <bail if pmd_trans_huge(*dst_pmd)> BUG_ON(pmd_none(*dst_pmd)) I have experimentally verified this in a kernel with extra mdelay() calls; the BUG_ON(pmd_none(*dst_pmd)) triggers. On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow pte_offset_map[_lock]() to fail"), this can't lead to anything worse than a BUG_ON(), since the page table access helpers are actually designed to deal with page tables concurrently disappearing; but on older kernels (<=6.4), I think we could probably theoretically race past the two BUG_ON() checks and end up treating a hugepage as a page table. The second issue is that, as Qi Zheng pointed out, there are other types of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs (in particular, migration PMDs). On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a PMD that contains a migration entry (which just requires winning a single, fairly wide race), it will pass the PMD to pte_offset_map_lock(), which assumes that the PMD points to a page table. Breakage follows: First, the kernel tries to take the PTE lock (which will crash or maybe worse if there is no "struct page" for the address bits in the migration entry PMD - I think at least on X86 there usually is no corresponding "struct page" thanks to the PTE inversion mitigation, amd64 looks different). If that didn't crash, the kernel would next try to write a PTE into what it wrongly thinks is a page table. As part of fixing these issues, get rid of the check for pmd_trans_huge() before __pte_alloc() - that's redundant, we're going to have to check for that after the __pte_alloc() anyway. Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.