Filtered by vendor Redhat Subscriptions
Total 22869 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-50212 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: do not allow CHAIN_ID to refer to another table When doing lookups for chains on the same batch by using its ID, a chain from a different table can be used. If a rule is added to a table but refers to a chain in a different table, it will be linked to the chain in table2, but would have expressions referring to objects in table1. Then, when table1 is removed, the rule will not be removed as its linked to a chain in table2. When expressions in the rule are processed or removed, that will lead to a use-after-free. When looking for chains by ID, use the table that was used for the lookup by name, and only return chains belonging to that same table.
CVE-2022-50100 1 Redhat 1 Enterprise Linux 2025-06-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/core: Do not requeue task on CPU excluded from cpus_mask The following warning was triggered on a large machine early in boot on a distribution kernel but the same problem should also affect mainline. WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440 Call Trace: <TASK> rescuer_thread+0x1f6/0x360 kthread+0x156/0x180 ret_from_fork+0x22/0x30 </TASK> Commit c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") optimises ttwu by queueing a task that is descheduling on the wakelist, but does not check if the task descheduling is still allowed to run on that CPU. In this warning, the problematic task is a workqueue rescue thread which checks if the rescue is for a per-cpu workqueue and running on the wrong CPU. While this is early in boot and it should be possible to create workers, the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue thread is being used frequently. Tracing confirmed that the task should have migrated properly using the stopper thread to handle the migration. However, a parallel wakeup from udev running on another CPU that does not share CPU cache observes p->on_cpu and uses task_cpu(p), queues the task on the old CPU and triggers the warning. Check that the wakee task that is descheduling is still allowed to run on its current CPU and if not, wait for the descheduling to complete and select an allowed CPU.
CVE-2022-50044 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: start MHI channel after endpoit creation MHI channel may generates event/interrupt right after enabling. It may leads to 2 race conditions issues. 1) Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check: if (!qdev || mhi_res->transaction_status) return; Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at this moment. In this situation qrtr-ns will be unable to enumerate services in device. --------------------------------------------------------------- 2) Such event may come at the moment after dev_set_drvdata() and before qrtr_endpoint_register(). In this case kernel will panic with accessing wrong pointer at qcom_mhi_qrtr_dl_callback(): rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr, mhi_res->bytes_xferd); Because endpoint is not created yet. -------------------------------------------------------------- So move mhi_prepare_for_transfer_autoqueue after endpoint creation to fix it.
CVE-2022-50115 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc3-topology: Prevent double freeing of ipc_control_data via load_bytes We have sanity checks for byte controls and if any of the fail the locally allocated scontrol->ipc_control_data is freed up, but not set to NULL. On a rollback path of the error the higher level code will also try to free the scontrol->ipc_control_data which will eventually going to lead to memory corruption as double freeing memory is not a good thing.
CVE-2022-50190 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: Fix simplification of devm_spi_register_controller This reverts commit 59ebbe40fb51 ("spi: simplify devm_spi_register_controller"). If devm_add_action() fails in devm_add_action_or_reset(), devm_spi_unregister() will be called, it decreases the refcount of 'ctlr->dev' to 0, then it will cause uaf in the drivers that calling spi_put_controller() in error path.
CVE-2022-50069 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: BPF: Fix potential bad pointer dereference in bpf_sys_bpf() The bpf_sys_bpf() helper function allows an eBPF program to load another eBPF program from within the kernel. In this case the argument union bpf_attr pointer (as well as the insns and license pointers inside) is a kernel address instead of a userspace address (which is the case of a usual bpf() syscall). To make the memory copying process in the syscall work in both cases, bpfptr_t was introduced to wrap around the pointer and distinguish its origin. Specifically, when copying memory contents from a bpfptr_t, a copy_from_user() is performed in case of a userspace address and a memcpy() is performed for a kernel address. This can lead to problems because the in-kernel pointer is never checked for validity. The problem happens when an eBPF syscall program tries to call bpf_sys_bpf() to load a program but provides a bad insns pointer -- say 0xdeadbeef -- in the bpf_attr union. The helper calls __sys_bpf() which would then call bpf_prog_load() to load the program. bpf_prog_load() is responsible for copying the eBPF instructions to the newly allocated memory for the program; it creates a kernel bpfptr_t for insns and invokes copy_from_bpfptr(). Internally, all bpfptr_t operations are backed by the corresponding sockptr_t operations, which performs direct memcpy() on kernel pointers for copy_from/strncpy_from operations. Therefore, the code is always happy to dereference the bad pointer to trigger a un-handle-able page fault and in turn an oops. However, this is not supposed to happen because at that point the eBPF program is already verified and should not cause a memory error. Sample KASAN trace: [ 25.685056][ T228] ================================================================== [ 25.685680][ T228] BUG: KASAN: user-memory-access in copy_from_bpfptr+0x21/0x30 [ 25.686210][ T228] Read of size 80 at addr 00000000deadbeef by task poc/228 [ 25.686732][ T228] [ 25.686893][ T228] CPU: 3 PID: 228 Comm: poc Not tainted 5.19.0-rc7 #7 [ 25.687375][ T228] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS d55cb5a 04/01/2014 [ 25.687991][ T228] Call Trace: [ 25.688223][ T228] <TASK> [ 25.688429][ T228] dump_stack_lvl+0x73/0x9e [ 25.688747][ T228] print_report+0xea/0x200 [ 25.689061][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.689401][ T228] ? _printk+0x54/0x6e [ 25.689693][ T228] ? _raw_spin_lock_irqsave+0x70/0xd0 [ 25.690071][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.690412][ T228] kasan_report+0xb5/0xe0 [ 25.690716][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.691059][ T228] kasan_check_range+0x2bd/0x2e0 [ 25.691405][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.691734][ T228] memcpy+0x25/0x60 [ 25.692000][ T228] copy_from_bpfptr+0x21/0x30 [ 25.692328][ T228] bpf_prog_load+0x604/0x9e0 [ 25.692653][ T228] ? cap_capable+0xb4/0xe0 [ 25.692956][ T228] ? security_capable+0x4f/0x70 [ 25.693324][ T228] __sys_bpf+0x3af/0x580 [ 25.693635][ T228] bpf_sys_bpf+0x45/0x240 [ 25.693937][ T228] bpf_prog_f0ec79a5a3caca46_bpf_func1+0xa2/0xbd [ 25.694394][ T228] bpf_prog_run_pin_on_cpu+0x2f/0xb0 [ 25.694756][ T228] bpf_prog_test_run_syscall+0x146/0x1c0 [ 25.695144][ T228] bpf_prog_test_run+0x172/0x190 [ 25.695487][ T228] __sys_bpf+0x2c5/0x580 [ 25.695776][ T228] __x64_sys_bpf+0x3a/0x50 [ 25.696084][ T228] do_syscall_64+0x60/0x90 [ 25.696393][ T228] ? fpregs_assert_state_consistent+0x50/0x60 [ 25.696815][ T228] ? exit_to_user_mode_prepare+0x36/0xa0 [ 25.697202][ T228] ? syscall_exit_to_user_mode+0x20/0x40 [ 25.697586][ T228] ? do_syscall_64+0x6e/0x90 [ 25.697899][ T228] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 25.698312][ T228] RIP: 0033:0x7f6d543fb759 [ 25.698624][ T228] Code: 08 5b 89 e8 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d ---truncated---
CVE-2022-50177 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rcutorture: Fix ksoftirqd boosting timing and iteration The RCU priority boosting can fail in two situations: 1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs is higher than those brought online at boot, then torture_onoff() may later bring up CPUs that weren't online on boot. Now since rcutorture initialization only boosts the ksoftirqds of the CPUs that have been set online on boot, the CPUs later set online by torture_onoff won't benefit from the boost, making RCU priority boosting fail. 2) The ksoftirqd kthreads are boosted after the creation of rcu_torture_boost() kthreads, which opens a window large enough for these rcu_torture_boost() kthreads to wait (despite running at FIFO priority) for ksoftirqds that are still running at SCHED_NORMAL priority. The issues can trigger for example with: ./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y" [ 34.968561] rcu-torture: !!! [ 34.968627] ------------[ cut here ]------------ [ 35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610 [ 35.052043] Modules linked in: [ 35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1 [ 35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014 [ 35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610 [ 35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82 [ 37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202 [ 37.277320] rcu: De-offloading 8 [ 37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001 [ 37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff [ 37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff [ 37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20 [ 37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0 [ 37.290427] FS: 0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000 [ 37.290448] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0 [ 37.290470] Call Trace: [ 37.295049] <TASK> [ 37.295065] ? preempt_count_add+0x63/0x90 [ 37.295095] ? _raw_spin_lock_irqsave+0x12/0x40 [ 37.295125] ? rcu_torture_stats_print+0x610/0x610 [ 37.295143] rcu_torture_stats+0x29/0x70 [ 37.295160] kthread+0xe3/0x110 [ 37.295176] ? kthread_complete_and_exit+0x20/0x20 [ 37.295193] ret_from_fork+0x22/0x30 [ 37.295218] </TASK> Fix this with boosting the ksoftirqds kthreads from the boosting hotplug callback itself and before the boosting kthreads are created.
CVE-2022-50200 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: selinux: Add boundary check in put_entry() Just like next_entry(), boundary check is necessary to prevent memory out-of-bound access.
CVE-2022-50088 1 Redhat 1 Enterprise Linux 2025-06-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/reclaim: fix potential memory leak in damon_reclaim_init() damon_reclaim_init() allocates a memory chunk for ctx with damon_new_ctx(). When damon_select_ops() fails, ctx is not released, which will lead to a memory leak. We should release the ctx with damon_destroy_ctx() when damon_select_ops() fails to fix the memory leak.
CVE-2022-50093 1 Redhat 1 Enterprise Linux 2025-06-18 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: avoid invalid memory access via node_online(NUMA_NO_NODE) KASAN reports: [ 4.668325][ T0] BUG: KASAN: wild-memory-access in dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497) [ 4.676149][ T0] Read of size 8 at addr 1fffffff85115558 by task swapper/0/0 [ 4.683454][ T0] [ 4.685638][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.19.0-rc3-00004-g0e862838f290 #1 [ 4.694331][ T0] Hardware name: Supermicro SYS-5018D-FN4T/X10SDV-8C-TLN4F, BIOS 1.1 03/02/2016 [ 4.703196][ T0] Call Trace: [ 4.706334][ T0] <TASK> [ 4.709133][ T0] ? dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497) after converting the type of the first argument (@nr, bit number) of arch_test_bit() from `long` to `unsigned long`[0]. Under certain conditions (for example, when ACPI NUMA is disabled via command line), pxm_to_node() can return %NUMA_NO_NODE (-1). It is valid 'magic' number of NUMA node, but not valid bit number to use in bitops. node_online() eventually descends to test_bit() without checking for the input, assuming it's on caller side (which might be good for perf-critical tasks). There, -1 becomes %ULONG_MAX which leads to an insane array index when calculating bit position in memory. For now, add an explicit check for @node being not %NUMA_NO_NODE before calling test_bit(). The actual logics didn't change here at all. [0] https://github.com/norov/linux/commit/0e862838f290147ea9c16db852d8d494b552d38d
CVE-2022-50178 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: 8852a: rfk: fix div 0 exception The DPK is a kind of RF calibration whose algorithm is to fine tune parameters and calibrate, and check the result. If the result isn't good enough, it could adjust parameters and try again. This issue is to read and show the result, but it could be a negative calibration result that causes divisor 0 and core dump. So, fix it by phy_div() that does division only if divisor isn't zero; otherwise, zero is adopted. divide error: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 728 Comm: wpa_supplicant Not tainted 5.10.114-16019-g462a1661811a #1 <HASH:d024 28> RIP: 0010:rtw8852a_dpk+0x14ae/0x288f [rtw89_core] RSP: 0018:ffffa9bb412a7520 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 00000000000180fc RDI: ffffa141d01023c0 RBP: ffffa9bb412a76a0 R08: 0000000000001319 R09: 00000000ffffff92 R10: ffffffffc0292de3 R11: ffffffffc00d2f51 R12: 0000000000000000 R13: ffffa141d01023c0 R14: ffffffffc0290250 R15: ffffa141d0102638 FS: 00007fa99f5c2740(0000) GS:ffffa142e5e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000013e8e010 CR3: 0000000110d2c000 CR4: 0000000000750ee0 PKRU: 55555554 Call Trace: rtw89_core_sta_add+0x95/0x9c [rtw89_core <HASH:d239 29>] rtw89_ops_sta_state+0x5d/0x108 [rtw89_core <HASH:d239 29>] drv_sta_state+0x115/0x66f [mac80211 <HASH:81fe 30>] sta_info_insert_rcu+0x45c/0x713 [mac80211 <HASH:81fe 30>] sta_info_insert+0xf/0x1b [mac80211 <HASH:81fe 30>] ieee80211_prep_connection+0x9d6/0xb0c [mac80211 <HASH:81fe 30>] ieee80211_mgd_auth+0x2aa/0x352 [mac80211 <HASH:81fe 30>] cfg80211_mlme_auth+0x160/0x1f6 [cfg80211 <HASH:00cd 31>] nl80211_authenticate+0x2e5/0x306 [cfg80211 <HASH:00cd 31>] genl_rcv_msg+0x371/0x3a1 ? nl80211_stop_sched_scan+0xe5/0xe5 [cfg80211 <HASH:00cd 31>] ? genl_rcv+0x36/0x36 netlink_rcv_skb+0x8a/0xf9 genl_rcv+0x28/0x36 netlink_unicast+0x27b/0x3a0 netlink_sendmsg+0x2aa/0x469 sock_sendmsg_nosec+0x49/0x4d ____sys_sendmsg+0xe5/0x213 __sys_sendmsg+0xec/0x157 ? syscall_enter_from_user_mode+0xd7/0x116 do_syscall_64+0x43/0x55 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fa99f6e689b
CVE-2022-50168 1 Redhat 1 Enterprise Linux 2025-06-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, x86: fix freeing of not-finalized bpf_prog_pack syzbot reported a few issues with bpf_prog_pack [1], [2]. This only happens with multiple subprogs. In jit_subprogs(), we first call bpf_int_jit_compile() on each sub program. And then, we call it on each sub program again. jit_data is not freed in the first call of bpf_int_jit_compile(). Similarly we don't call bpf_jit_binary_pack_finalize() in the first call of bpf_int_jit_compile(). If bpf_int_jit_compile() failed for one sub program, we will call bpf_jit_binary_pack_finalize() for this sub program. However, we don't have a chance to call it for other sub programs. Then we will hit "goto out_free" in jit_subprogs(), and call bpf_jit_free on some subprograms that haven't got bpf_jit_binary_pack_finalize() yet. At this point, bpf_jit_binary_pack_free() is called and the whole 2MB page is freed erroneously. Fix this with a custom bpf_jit_free() for x86_64, which calls bpf_jit_binary_pack_finalize() if necessary. Also, with custom bpf_jit_free(), bpf_prog_aux->use_bpf_prog_pack is not needed any more, remove it. [1] https://syzkaller.appspot.com/bug?extid=2f649ec6d2eea1495a8f [2] https://syzkaller.appspot.com/bug?extid=87f65c75f4a72db05445
CVE-2022-50066 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: fix aq_vec index out of range error The final update statement of the for loop exceeds the array range, the dereference of self->aq_vec[i] is not checked and then leads to the index out of range error. Also fixed this kind of coding style in other for loop. [ 97.937604] UBSAN: array-index-out-of-bounds in drivers/net/ethernet/aquantia/atlantic/aq_nic.c:1404:48 [ 97.937607] index 8 is out of range for type 'aq_vec_s *[8]' [ 97.937608] CPU: 38 PID: 3767 Comm: kworker/u256:18 Not tainted 5.19.0+ #2 [ 97.937610] Hardware name: Dell Inc. Precision 7865 Tower/, BIOS 1.0.0 06/12/2022 [ 97.937611] Workqueue: events_unbound async_run_entry_fn [ 97.937616] Call Trace: [ 97.937617] <TASK> [ 97.937619] dump_stack_lvl+0x49/0x63 [ 97.937624] dump_stack+0x10/0x16 [ 97.937626] ubsan_epilogue+0x9/0x3f [ 97.937627] __ubsan_handle_out_of_bounds.cold+0x44/0x49 [ 97.937629] ? __scm_send+0x348/0x440 [ 97.937632] ? aq_vec_stop+0x72/0x80 [atlantic] [ 97.937639] aq_nic_stop+0x1b6/0x1c0 [atlantic] [ 97.937644] aq_suspend_common+0x88/0x90 [atlantic] [ 97.937648] aq_pm_suspend_poweroff+0xe/0x20 [atlantic] [ 97.937653] pci_pm_suspend+0x7e/0x1a0 [ 97.937655] ? pci_pm_suspend_noirq+0x2b0/0x2b0 [ 97.937657] dpm_run_callback+0x54/0x190 [ 97.937660] __device_suspend+0x14c/0x4d0 [ 97.937661] async_suspend+0x23/0x70 [ 97.937663] async_run_entry_fn+0x33/0x120 [ 97.937664] process_one_work+0x21f/0x3f0 [ 97.937666] worker_thread+0x4a/0x3c0 [ 97.937668] ? process_one_work+0x3f0/0x3f0 [ 97.937669] kthread+0xf0/0x120 [ 97.937671] ? kthread_complete_and_exit+0x20/0x20 [ 97.937672] ret_from_fork+0x22/0x30 [ 97.937676] </TASK> v2. fixed "warning: variable 'aq_vec' set but not used" v3. simplified a for loop
CVE-2022-49951 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: firmware_loader: Fix use-after-free during unregister In the following code within firmware_upload_unregister(), the call to device_unregister() could result in the dev_release function freeing the fw_upload_priv structure before it is dereferenced for the call to module_put(). This bug was found by the kernel test robot using CONFIG_KASAN while running the firmware selftests. device_unregister(&fw_sysfs->dev); module_put(fw_upload_priv->module); The problem is fixed by copying fw_upload_priv->module to a local variable for use when calling device_unregister().
CVE-2022-49960 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/i915: fix null pointer dereference Asus chromebook CX550 crashes during boot on v5.17-rc1 kernel. The root cause is null pointer defeference of bi_next in tgl_get_bw_info() in drivers/gpu/drm/i915/display/intel_bw.c. BUG: kernel NULL pointer dereference, address: 000000000000002e PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 1 Comm: swapper/0 Tainted: G U 5.17.0-rc1 Hardware name: Google Delbin/Delbin, BIOS Google_Delbin.13672.156.3 05/14/2021 RIP: 0010:tgl_get_bw_info+0x2de/0x510 ... [ 2.554467] Call Trace: [ 2.554467] <TASK> [ 2.554467] intel_bw_init_hw+0x14a/0x434 [ 2.554467] ? _printk+0x59/0x73 [ 2.554467] ? _dev_err+0x77/0x91 [ 2.554467] i915_driver_hw_probe+0x329/0x33e [ 2.554467] i915_driver_probe+0x4c8/0x638 [ 2.554467] i915_pci_probe+0xf8/0x14e [ 2.554467] ? _raw_spin_unlock_irqrestore+0x12/0x2c [ 2.554467] pci_device_probe+0xaa/0x142 [ 2.554467] really_probe+0x13f/0x2f4 [ 2.554467] __driver_probe_device+0x9e/0xd3 [ 2.554467] driver_probe_device+0x24/0x7c [ 2.554467] __driver_attach+0xba/0xcf [ 2.554467] ? driver_attach+0x1f/0x1f [ 2.554467] bus_for_each_dev+0x8c/0xc0 [ 2.554467] bus_add_driver+0x11b/0x1f7 [ 2.554467] driver_register+0x60/0xea [ 2.554467] ? mipi_dsi_bus_init+0x16/0x16 [ 2.554467] i915_init+0x2c/0xb9 [ 2.554467] ? mipi_dsi_bus_init+0x16/0x16 [ 2.554467] do_one_initcall+0x12e/0x2b3 [ 2.554467] do_initcall_level+0xd6/0xf3 [ 2.554467] do_initcalls+0x4e/0x79 [ 2.554467] kernel_init_freeable+0xed/0x14d [ 2.554467] ? rest_init+0xc1/0xc1 [ 2.554467] kernel_init+0x1a/0x120 [ 2.554467] ret_from_fork+0x1f/0x30 [ 2.554467] </TASK> ... Kernel panic - not syncing: Fatal exception (cherry picked from commit c247cd03898c4c43c3bce6d4014730403bc13032)
CVE-2022-50029 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: ipq8074: dont disable gcc_sleep_clk_src Once the usb sleep clocks are disabled, clock framework is trying to disable the sleep clock source also. However, it seems that it cannot be disabled and trying to do so produces: [ 245.436390] ------------[ cut here ]------------ [ 245.441233] gcc_sleep_clk_src status stuck at 'on' [ 245.441254] WARNING: CPU: 2 PID: 223 at clk_branch_wait+0x130/0x140 [ 245.450435] Modules linked in: xhci_plat_hcd xhci_hcd dwc3 dwc3_qcom leds_gpio [ 245.456601] CPU: 2 PID: 223 Comm: sh Not tainted 5.18.0-rc4 #215 [ 245.463889] Hardware name: Xiaomi AX9000 (DT) [ 245.470050] pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 245.474307] pc : clk_branch_wait+0x130/0x140 [ 245.481073] lr : clk_branch_wait+0x130/0x140 [ 245.485588] sp : ffffffc009f2bad0 [ 245.489838] x29: ffffffc009f2bad0 x28: ffffff8003e6c800 x27: 0000000000000000 [ 245.493057] x26: 0000000000000000 x25: 0000000000000000 x24: ffffff800226ef20 [ 245.500175] x23: ffffffc0089ff550 x22: 0000000000000000 x21: ffffffc008476ad0 [ 245.507294] x20: 0000000000000000 x19: ffffffc00965ac70 x18: fffffffffffc51a7 [ 245.514413] x17: 68702e3030303837 x16: 3a6d726f6674616c x15: ffffffc089f2b777 [ 245.521531] x14: ffffffc0095c9d18 x13: 0000000000000129 x12: 0000000000000129 [ 245.528649] x11: 00000000ffffffea x10: ffffffc009621d18 x9 : 0000000000000001 [ 245.535767] x8 : 0000000000000001 x7 : 0000000000017fe8 x6 : 0000000000000001 [ 245.542885] x5 : ffffff803fdca6d8 x4 : 0000000000000000 x3 : 0000000000000027 [ 245.550002] x2 : 0000000000000027 x1 : 0000000000000023 x0 : 0000000000000026 [ 245.557122] Call trace: [ 245.564229] clk_branch_wait+0x130/0x140 [ 245.566490] clk_branch2_disable+0x2c/0x40 [ 245.570656] clk_core_disable+0x60/0xb0 [ 245.574561] clk_core_disable+0x68/0xb0 [ 245.578293] clk_disable+0x30/0x50 [ 245.582113] dwc3_qcom_remove+0x60/0xc0 [dwc3_qcom] [ 245.585588] platform_remove+0x28/0x60 [ 245.590361] device_remove+0x4c/0x80 [ 245.594179] device_release_driver_internal+0x1dc/0x230 [ 245.597914] device_driver_detach+0x18/0x30 [ 245.602861] unbind_store+0xec/0x110 [ 245.607027] drv_attr_store+0x24/0x40 [ 245.610847] sysfs_kf_write+0x44/0x60 [ 245.614405] kernfs_fop_write_iter+0x128/0x1c0 [ 245.618052] new_sync_write+0xc0/0x130 [ 245.622391] vfs_write+0x1d4/0x2a0 [ 245.626123] ksys_write+0x58/0xe0 [ 245.629508] __arm64_sys_write+0x1c/0x30 [ 245.632895] invoke_syscall.constprop.0+0x5c/0x110 [ 245.636890] do_el0_svc+0xa0/0x150 [ 245.641488] el0_svc+0x18/0x60 [ 245.644872] el0t_64_sync_handler+0xa4/0x130 [ 245.647914] el0t_64_sync+0x174/0x178 [ 245.652340] ---[ end trace 0000000000000000 ]--- So, add CLK_IS_CRITICAL flag to the clock so that the kernel won't try to disable the sleep clock.
CVE-2022-49991 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: avoid corrupting page->mapping in hugetlb_mcopy_atomic_pte In MCOPY_ATOMIC_CONTINUE case with a non-shared VMA, pages in the page cache are installed in the ptes. But hugepage_add_new_anon_rmap is called for them mistakenly because they're not vm_shared. This will corrupt the page->mapping used by page cache code.
CVE-2022-50020 1 Redhat 1 Enterprise Linux 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid resizing to a partial cluster size This patch avoids an attempt to resize the filesystem to an unaligned cluster boundary. An online resize to a size that is not integral to cluster size results in the last iteration attempting to grow the fs by a negative amount, which trips a BUG_ON and leaves the fs with a corrupted in-memory superblock.
CVE-2022-49940 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-06-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: add sanity check for gsm->receive in gsm_receive_buf() A null pointer dereference can happen when attempting to access the "gsm->receive()" function in gsmld_receive_buf(). Currently, the code assumes that gsm->recieve is only called after MUX activation. Since the gsmld_receive_buf() function can be accessed without the need to initialize the MUX, the gsm->receive() function will not be set and a NULL pointer dereference will occur. Fix this by avoiding the call to "gsm->receive()" in case the function is not initialized by adding a sanity check. Call Trace: <TASK> gsmld_receive_buf+0x1c2/0x2f0 drivers/tty/n_gsm.c:2861 tiocsti drivers/tty/tty_io.c:2293 [inline] tty_ioctl+0xa75/0x15d0 drivers/tty/tty_io.c:2692 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-49961 1 Redhat 1 Enterprise Linux 2025-06-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Do mark_chain_precision for ARG_CONST_ALLOC_SIZE_OR_ZERO Precision markers need to be propagated whenever we have an ARG_CONST_* style argument, as the verifier cannot consider imprecise scalars to be equivalent for the purposes of states_equal check when such arguments refine the return value (in this case, set mem_size for PTR_TO_MEM). The resultant mem_size for the R0 is derived from the constant value, and if the verifier incorrectly prunes states considering them equivalent where such arguments exist (by seeing that both registers have reg->precise as false in regsafe), we can end up with invalid programs passing the verifier which can do access beyond what should have been the correct mem_size in that explored state. To show a concrete example of the problem: 0000000000000000 <prog>: 0: r2 = *(u32 *)(r1 + 80) 1: r1 = *(u32 *)(r1 + 76) 2: r3 = r1 3: r3 += 4 4: if r3 > r2 goto +18 <LBB5_5> 5: w2 = 0 6: *(u32 *)(r1 + 0) = r2 7: r1 = *(u32 *)(r1 + 0) 8: r2 = 1 9: if w1 == 0 goto +1 <LBB5_3> 10: r2 = -1 0000000000000058 <LBB5_3>: 11: r1 = 0 ll 13: r3 = 0 14: call bpf_ringbuf_reserve 15: if r0 == 0 goto +7 <LBB5_5> 16: r1 = r0 17: r1 += 16777215 18: w2 = 0 19: *(u8 *)(r1 + 0) = r2 20: r1 = r0 21: r2 = 0 22: call bpf_ringbuf_submit 00000000000000b8 <LBB5_5>: 23: w0 = 0 24: exit For the first case, the single line execution's exploration will prune the search at insn 14 for the branch insn 9's second leg as it will be verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will always be 0 so at runtime we don't get error for being greater than UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just sees reg->precise as false for both r2 registers in both states, hence considers them equal for purposes of states_equal. If we propagated precise markers using the backtracking support, we would use the precise marking to then ensure that old r2 (UINT_MAX) was within the new r2 (1) and this would never be true, so the verification would rightfully fail. The end result is that the out of bounds access at instruction 19 would be permitted without this fix. Note that reg->precise is always set to true when user does not have CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static or global functions)), hence this is only a problem when precision marks need to be explicitly propagated (i.e. privileged users with CAP_BPF). A simplified test case has been included in the next patch to prevent future regressions.