Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16951 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-54171 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix memory leak of iter->temp when reading trace_pipe kmemleak reports: unreferenced object 0xffff88814d14e200 (size 256): comm "cat", pid 336, jiffies 4294871818 (age 779.490s) hex dump (first 32 bytes): 04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00 ................ 0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff .........Z...... backtrace: [<ffffffff9bdff18f>] __kmalloc+0x4f/0x140 [<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0 [<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0 [<ffffffff9bc94490>] print_trace_line+0x3e0/0x950 [<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0 [<ffffffff9bf03a43>] vfs_read+0x143/0x520 [<ffffffff9bf04c2d>] ksys_read+0xbd/0x160 [<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90 [<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 when reading file 'trace_pipe', 'iter->temp' is allocated or relocated in trace_find_next_entry() but not freed before 'trace_pipe' is closed. To fix it, free 'iter->temp' in tracing_release_pipe().
CVE-2022-50850 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ipr: Fix WARNING in ipr_init() ipr_init() will not call unregister_reboot_notifier() when pci_register_driver() fails, which causes a WARNING. Call unregister_reboot_notifier() when pci_register_driver() fails. notifier callback ipr_halt [ipr] already registered WARNING: CPU: 3 PID: 299 at kernel/notifier.c:29 notifier_chain_register+0x16d/0x230 Modules linked in: ipr(+) xhci_pci_renesas xhci_hcd ehci_hcd usbcore led_class gpu_sched drm_buddy video wmi drm_ttm_helper ttm drm_display_helper drm_kms_helper drm drm_panel_orientation_quirks agpgart cfbft CPU: 3 PID: 299 Comm: modprobe Tainted: G W 6.1.0-rc1-00190-g39508d23b672-dirty #332 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:notifier_chain_register+0x16d/0x230 Call Trace: <TASK> __blocking_notifier_chain_register+0x73/0xb0 ipr_init+0x30/0x1000 [ipr] do_one_initcall+0xdb/0x480 do_init_module+0x1cf/0x680 load_module+0x6a50/0x70a0 __do_sys_finit_module+0x12f/0x1c0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2023-54195 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix timeout of a call that hasn't yet been granted a channel afs_make_call() calls rxrpc_kernel_begin_call() to begin a call (which may get stalled in the background waiting for a connection to become available); it then calls rxrpc_kernel_set_max_life() to set the timeouts - but that starts the call timer so the call timer might then expire before we get a connection assigned - leading to the following oops if the call stalled: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... CPU: 1 PID: 5111 Comm: krxrpcio/0 Not tainted 6.3.0-rc7-build3+ #701 RIP: 0010:rxrpc_alloc_txbuf+0xc0/0x157 ... Call Trace: <TASK> rxrpc_send_ACK+0x50/0x13b rxrpc_input_call_event+0x16a/0x67d rxrpc_io_thread+0x1b6/0x45f ? _raw_spin_unlock_irqrestore+0x1f/0x35 ? rxrpc_input_packet+0x519/0x519 kthread+0xe7/0xef ? kthread_complete_and_exit+0x1b/0x1b ret_from_fork+0x22/0x30 Fix this by noting the timeouts in struct rxrpc_call when the call is created. The timer will be started when the first packet is transmitted. It shouldn't be possible to trigger this directly from userspace through AF_RXRPC as sendmsg() will return EBUSY if the call is in the waiting-for-conn state if it dropped out of the wait due to a signal.
CVE-2023-54176 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: stricter state check in mptcp_worker As reported by Christoph, the mptcp protocol can run the worker when the relevant msk socket is in an unexpected state: connect() // incoming reset + fastclose // the mptcp worker is scheduled mptcp_disconnect() // msk is now CLOSED listen() mptcp_worker() Leading to the following splat: divide error: 0000 [#1] PREEMPT SMP CPU: 1 PID: 21 Comm: kworker/1:0 Not tainted 6.3.0-rc1-gde5e8fd0123c #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 Workqueue: events mptcp_worker RIP: 0010:__tcp_select_window+0x22c/0x4b0 net/ipv4/tcp_output.c:3018 RSP: 0018:ffffc900000b3c98 EFLAGS: 00010293 RAX: 000000000000ffd7 RBX: 000000000000ffd7 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8214ce97 RDI: 0000000000000004 RBP: 000000000000ffd7 R08: 0000000000000004 R09: 0000000000010000 R10: 000000000000ffd7 R11: ffff888005afa148 R12: 000000000000ffd7 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88803ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000405270 CR3: 000000003011e006 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_select_window net/ipv4/tcp_output.c:262 [inline] __tcp_transmit_skb+0x356/0x1280 net/ipv4/tcp_output.c:1345 tcp_transmit_skb net/ipv4/tcp_output.c:1417 [inline] tcp_send_active_reset+0x13e/0x320 net/ipv4/tcp_output.c:3459 mptcp_check_fastclose net/mptcp/protocol.c:2530 [inline] mptcp_worker+0x6c7/0x800 net/mptcp/protocol.c:2705 process_one_work+0x3bd/0x950 kernel/workqueue.c:2390 worker_thread+0x5b/0x610 kernel/workqueue.c:2537 kthread+0x138/0x170 kernel/kthread.c:376 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> This change addresses the issue explicitly checking for bad states before running the mptcp worker.
CVE-2023-54173 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Disable preemption in bpf_event_output We received report [1] of kernel crash, which is caused by using nesting protection without disabled preemption. The bpf_event_output can be called by programs executed by bpf_prog_run_array_cg function that disabled migration but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: BUG: kernel NULL pointer dereference, address: 0000000000000001 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page ... ? perf_output_sample+0x12a/0x9a0 ? finish_task_switch.isra.0+0x81/0x280 ? perf_event_output+0x66/0xa0 ? bpf_event_output+0x13a/0x190 ? bpf_event_output_data+0x22/0x40 ? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb ? xa_load+0x87/0xe0 ? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0 ? release_sock+0x3e/0x90 ? sk_setsockopt+0x1a1/0x12f0 ? udp_pre_connect+0x36/0x50 ? inet_dgram_connect+0x93/0xa0 ? __sys_connect+0xb4/0xe0 ? udp_setsockopt+0x27/0x40 ? __pfx_udp_push_pending_frames+0x10/0x10 ? __sys_setsockopt+0xdf/0x1a0 ? __x64_sys_connect+0xf/0x20 ? do_syscall_64+0x3a/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc Fixing this by disabling preemption in bpf_event_output. [1] https://github.com/cilium/cilium/issues/26756
CVE-2022-50885 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix NULL-ptr-deref in rxe_qp_do_cleanup() when socket create failed There is a null-ptr-deref when mount.cifs over rdma: BUG: KASAN: null-ptr-deref in rxe_qp_do_cleanup+0x2f3/0x360 [rdma_rxe] Read of size 8 at addr 0000000000000018 by task mount.cifs/3046 CPU: 2 PID: 3046 Comm: mount.cifs Not tainted 6.1.0-rc5+ #62 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc3 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 kasan_report+0xad/0x130 rxe_qp_do_cleanup+0x2f3/0x360 [rdma_rxe] execute_in_process_context+0x25/0x90 __rxe_cleanup+0x101/0x1d0 [rdma_rxe] rxe_create_qp+0x16a/0x180 [rdma_rxe] create_qp.part.0+0x27d/0x340 ib_create_qp_kernel+0x73/0x160 rdma_create_qp+0x100/0x230 _smbd_get_connection+0x752/0x20f0 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The root cause of the issue is the socket create failed in rxe_qp_init_req(). So move the reset rxe_qp_do_cleanup() after the NULL ptr check.
CVE-2023-54203 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in init_smb2_rsp_hdr When smb1 mount fails, KASAN detect slab-out-of-bounds in init_smb2_rsp_hdr like the following one. For smb1 negotiate(56bytes) , init_smb2_rsp_hdr() for smb2 is called. The issue occurs while handling smb1 negotiate as smb2 server operations. Add smb server operations for smb1 (get_cmd_val, init_rsp_hdr, allocate_rsp_buf, check_user_session) to handle smb1 negotiate so that smb2 server operation does not handle it. [ 411.400423] CIFS: VFS: Use of the less secure dialect vers=1.0 is not recommended unless required for access to very old servers [ 411.400452] CIFS: Attempting to mount \\192.168.45.139\homes [ 411.479312] ksmbd: init_smb2_rsp_hdr : 492 [ 411.479323] ================================================================== [ 411.479327] BUG: KASAN: slab-out-of-bounds in init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479369] Read of size 16 at addr ffff888488ed0734 by task kworker/14:1/199 [ 411.479379] CPU: 14 PID: 199 Comm: kworker/14:1 Tainted: G OE 6.1.21 #3 [ 411.479386] Hardware name: ASUSTeK COMPUTER INC. Z10PA-D8 Series/Z10PA-D8 Series, BIOS 3801 08/23/2019 [ 411.479390] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] [ 411.479425] Call Trace: [ 411.479428] <TASK> [ 411.479432] dump_stack_lvl+0x49/0x63 [ 411.479444] print_report+0x171/0x4a8 [ 411.479452] ? kasan_complete_mode_report_info+0x3c/0x200 [ 411.479463] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479497] kasan_report+0xb4/0x130 [ 411.479503] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479537] kasan_check_range+0x149/0x1e0 [ 411.479543] memcpy+0x24/0x70 [ 411.479550] init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd] [ 411.479585] handle_ksmbd_work+0x109/0x760 [ksmbd] [ 411.479616] ? _raw_spin_unlock_irqrestore+0x50/0x50 [ 411.479624] ? smb3_encrypt_resp+0x340/0x340 [ksmbd] [ 411.479656] process_one_work+0x49c/0x790 [ 411.479667] worker_thread+0x2b1/0x6e0 [ 411.479674] ? process_one_work+0x790/0x790 [ 411.479680] kthread+0x177/0x1b0 [ 411.479686] ? kthread_complete_and_exit+0x30/0x30 [ 411.479692] ret_from_fork+0x22/0x30 [ 411.479702] </TASK>
CVE-2023-54200 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: always release netdev hooks from notifier This reverts "netfilter: nf_tables: skip netdev events generated on netns removal". The problem is that when a veth device is released, the veth release callback will also queue the peer netns device for removal. Its possible that the peer netns is also slated for removal. In this case, the device memory is already released before the pre_exit hook of the peer netns runs: BUG: KASAN: slab-use-after-free in nf_hook_entry_head+0x1b8/0x1d0 Read of size 8 at addr ffff88812c0124f0 by task kworker/u8:1/45 Workqueue: netns cleanup_net Call Trace: nf_hook_entry_head+0x1b8/0x1d0 __nf_unregister_net_hook+0x76/0x510 nft_netdev_unregister_hooks+0xa0/0x220 __nft_release_hook+0x184/0x490 nf_tables_pre_exit_net+0x12f/0x1b0 .. Order is: 1. First netns is released, veth_dellink() queues peer netns device for removal 2. peer netns is queued for removal 3. peer netns device is released, unreg event is triggered 4. unreg event is ignored because netns is going down 5. pre_exit hook calls nft_netdev_unregister_hooks but device memory might be free'd already.
CVE-2022-50875 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: of: overlay: fix null pointer dereferencing in find_dup_cset_node_entry() and find_dup_cset_prop() When kmalloc() fail to allocate memory in kasprintf(), fn_1 or fn_2 will be NULL, and strcmp() will cause null pointer dereference.
CVE-2022-50843 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm clone: Fix UAF in clone_dtr() Dm_clone also has the same UAF problem when dm_resume() and dm_destroy() are concurrent. Therefore, cancelling timer again in clone_dtr().
CVE-2022-50852 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix use after free in mt7921_acpi_read() Don't dereference "sar_root" after it has been freed.
CVE-2022-50840 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: snic: Fix possible UAF in snic_tgt_create() Smatch reports a warning as follows: drivers/scsi/snic/snic_disc.c:307 snic_tgt_create() warn: '&tgt->list' not removed from list If device_add() fails in snic_tgt_create(), tgt will be freed, but tgt->list will not be removed from snic->disc.tgt_list, then list traversal may cause UAF. Remove from snic->disc.tgt_list before free().
CVE-2022-50848 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: drivers: dio: fix possible memory leak in dio_init() If device_register() returns error, the 'dev' and name needs be freed. Add a release function, and then call put_device() in the error path, so the name is freed in kobject_cleanup() and to the 'dev' is freed in release function.
CVE-2022-50829 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: Fix use-after-free in ath9k_hif_usb_reg_in_cb() It is possible that skb is freed in ath9k_htc_rx_msg(), then usb_submit_urb() fails and we try to free skb again. It causes use-after-free bug. Moreover, if alloc_skb() fails, urb->context becomes NULL but rx_buf is not freed and there can be a memory leak. The patch removes unnecessary nskb and makes skb processing more clear: it is supposed that ath9k_htc_rx_msg() either frees old skb or passes its managing to another callback function. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50827 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix memory leak in lpfc_create_port() Commit 5e633302ace1 ("scsi: lpfc: vmid: Add support for VMID in mailbox command") introduced allocations for the VMID resources in lpfc_create_port() after the call to scsi_host_alloc(). Upon failure on the VMID allocations, the new code would branch to the 'out' label, which returns NULL without unwinding anything, thus skipping the call to scsi_host_put(). Fix the problem by creating a separate label 'out_free_vmid' to unwind the VMID resources and make the 'out_put_shost' label call only scsi_host_put(), as was done before the introduction of allocations for VMID.
CVE-2022-50825 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: wusb3801: fix fwnode refcount leak in wusb3801_probe() I got the following report while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 4, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/tcpc@60/connector If wusb3801_hw_init() fails, fwnode_handle_put() needs be called to avoid refcount leak.
CVE-2022-50821 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Don't leak netobj memory when gss_read_proxy_verf() fails
CVE-2022-50810 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: rapidio: devices: fix missing put_device in mport_cdev_open When kfifo_alloc fails, the refcount of chdev->dev is left incremental. We should use put_device(&chdev->dev) to decrease the ref count of chdev->dev to avoid refcount leak.
CVE-2022-50834 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: Fix potential resource leaks nfc_get_device() take reference for the device, add missing nfc_put_device() to release it when not need anymore. Also fix the style warnning by use error EOPNOTSUPP instead of ENOTSUPP.
CVE-2022-50833 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: use hdev->workqueue when queuing hdev->{cmd,ncmd}_timer works syzbot is reporting attempt to schedule hdev->cmd_work work from system_wq WQ into hdev->workqueue WQ which is under draining operation [1], for commit c8efcc2589464ac7 ("workqueue: allow chained queueing during destruction") does not allow such operation. The check introduced by commit 877afadad2dce8aa ("Bluetooth: When HCI work queue is drained, only queue chained work") was incomplete. Use hdev->workqueue WQ when queuing hdev->{cmd,ncmd}_timer works because hci_{cmd,ncmd}_timeout() calls queue_work(hdev->workqueue). Also, protect the queuing operation with RCU read lock in order to avoid calling queue_delayed_work() after cancel_delayed_work() completed.