Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
12376 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-48784 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix race in netlink owner interface destruction My previous fix here to fix the deadlock left a race where the exact same deadlock (see the original commit referenced below) can still happen if cfg80211_destroy_ifaces() already runs while nl80211_netlink_notify() is still marking some interfaces as nl_owner_dead. The race happens because we have two loops here - first we dev_close() all the netdevs, and then we destroy them. If we also have two netdevs (first one need only be a wdev though) then we can find one during the first iteration, close it, and go to the second iteration -- but then find two, and try to destroy also the one we didn't close yet. Fix this by only iterating once. | ||||
CVE-2022-48776 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: mtd: parsers: qcom: Fix missing free for pparts in cleanup Mtdpart doesn't free pparts when a cleanup function is declared. Add missing free for pparts in cleanup function for smem to fix the leak. | ||||
CVE-2022-48768 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tracing/histogram: Fix a potential memory leak for kstrdup() kfree() is missing on an error path to free the memory allocated by kstrdup(): p = param = kstrdup(data->params[i], GFP_KERNEL); So it is better to free it via kfree(p). | ||||
CVE-2022-48751 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/smc: Transitional solution for clcsock race issue We encountered a crash in smc_setsockopt() and it is caused by accessing smc->clcsock after clcsock was released. BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 50309 Comm: nginx Kdump: loaded Tainted: G E 5.16.0-rc4+ #53 RIP: 0010:smc_setsockopt+0x59/0x280 [smc] Call Trace: <TASK> __sys_setsockopt+0xfc/0x190 __x64_sys_setsockopt+0x20/0x30 do_syscall_64+0x34/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f16ba83918e </TASK> This patch tries to fix it by holding clcsock_release_lock and checking whether clcsock has already been released before access. In case that a crash of the same reason happens in smc_getsockopt() or smc_switch_to_fallback(), this patch also checkes smc->clcsock in them too. And the caller of smc_switch_to_fallback() will identify whether fallback succeeds according to the return value. | ||||
CVE-2022-48743 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: amd-xgbe: Fix skb data length underflow There will be BUG_ON() triggered in include/linux/skbuff.h leading to intermittent kernel panic, when the skb length underflow is detected. Fix this by dropping the packet if such length underflows are seen because of inconsistencies in the hardware descriptors. | ||||
CVE-2022-48724 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix potential memory leak in intel_setup_irq_remapping() After commit e3beca48a45b ("irqdomain/treewide: Keep firmware node unconditionally allocated"). For tear down scenario, fn is only freed after fail to allocate ir_domain, though it also should be freed in case dmar_enable_qi returns error. Besides free fn, irq_domain and ir_msi_domain need to be removed as well if intel_setup_irq_remapping fails to enable queued invalidation. Improve the rewinding path by add out_free_ir_domain and out_free_fwnode lables per Baolu's suggestion. | ||||
CVE-2022-48721 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/smc: Forward wakeup to smc socket waitqueue after fallback When we replace TCP with SMC and a fallback occurs, there may be some socket waitqueue entries remaining in smc socket->wq, such as eppoll_entries inserted by userspace applications. After the fallback, data flows over TCP/IP and only clcsocket->wq will be woken up. Applications can't be notified by the entries which were inserted in smc socket->wq before fallback. So we need a mechanism to wake up smc socket->wq at the same time if some entries remaining in it. The current workaround is to transfer the entries from smc socket->wq to clcsock->wq during the fallback. But this may cause a crash like this: general protection fault, probably for non-canonical address 0xdead000000000100: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 0 Comm: swapper/3 Kdump: loaded Tainted: G E 5.16.0+ #107 RIP: 0010:__wake_up_common+0x65/0x170 Call Trace: <IRQ> __wake_up_common_lock+0x7a/0xc0 sock_def_readable+0x3c/0x70 tcp_data_queue+0x4a7/0xc40 tcp_rcv_established+0x32f/0x660 ? sk_filter_trim_cap+0xcb/0x2e0 tcp_v4_do_rcv+0x10b/0x260 tcp_v4_rcv+0xd2a/0xde0 ip_protocol_deliver_rcu+0x3b/0x1d0 ip_local_deliver_finish+0x54/0x60 ip_local_deliver+0x6a/0x110 ? tcp_v4_early_demux+0xa2/0x140 ? tcp_v4_early_demux+0x10d/0x140 ip_sublist_rcv_finish+0x49/0x60 ip_sublist_rcv+0x19d/0x230 ip_list_rcv+0x13e/0x170 __netif_receive_skb_list_core+0x1c2/0x240 netif_receive_skb_list_internal+0x1e6/0x320 napi_complete_done+0x11d/0x190 mlx5e_napi_poll+0x163/0x6b0 [mlx5_core] __napi_poll+0x3c/0x1b0 net_rx_action+0x27c/0x300 __do_softirq+0x114/0x2d2 irq_exit_rcu+0xb4/0xe0 common_interrupt+0xba/0xe0 </IRQ> <TASK> The crash is caused by privately transferring waitqueue entries from smc socket->wq to clcsock->wq. The owners of these entries, such as epoll, have no idea that the entries have been transferred to a different socket wait queue and still use original waitqueue spinlock (smc socket->wq.wait.lock) to make the entries operation exclusive, but it doesn't work. The operations to the entries, such as removing from the waitqueue (now is clcsock->wq after fallback), may cause a crash when clcsock waitqueue is being iterated over at the moment. This patch tries to fix this by no longer transferring wait queue entries privately, but introducing own implementations of clcsock's callback functions in fallback situation. The callback functions will forward the wakeup to smc socket->wq if clcsock->wq is actually woken up and smc socket->wq has remaining entries. | ||||
CVE-2022-48674 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 6.2 Medium |
In the Linux kernel, the following vulnerability has been resolved: erofs: fix pcluster use-after-free on UP platforms During stress testing with CONFIG_SMP disabled, KASAN reports as below: ================================================================== BUG: KASAN: use-after-free in __mutex_lock+0xe5/0xc30 Read of size 8 at addr ffff8881094223f8 by task stress/7789 CPU: 0 PID: 7789 Comm: stress Not tainted 6.0.0-rc1-00002-g0d53d2e882f9 #3 Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 Call Trace: <TASK> .. __mutex_lock+0xe5/0xc30 .. z_erofs_do_read_page+0x8ce/0x1560 .. z_erofs_readahead+0x31c/0x580 .. Freed by task 7787 kasan_save_stack+0x1e/0x40 kasan_set_track+0x20/0x30 kasan_set_free_info+0x20/0x40 __kasan_slab_free+0x10c/0x190 kmem_cache_free+0xed/0x380 rcu_core+0x3d5/0xc90 __do_softirq+0x12d/0x389 Last potentially related work creation: kasan_save_stack+0x1e/0x40 __kasan_record_aux_stack+0x97/0xb0 call_rcu+0x3d/0x3f0 erofs_shrink_workstation+0x11f/0x210 erofs_shrink_scan+0xdc/0x170 shrink_slab.constprop.0+0x296/0x530 drop_slab+0x1c/0x70 drop_caches_sysctl_handler+0x70/0x80 proc_sys_call_handler+0x20a/0x2f0 vfs_write+0x555/0x6c0 ksys_write+0xbe/0x160 do_syscall_64+0x3b/0x90 The root cause is that erofs_workgroup_unfreeze() doesn't reset to orig_val thus it causes a race that the pcluster reuses unexpectedly before freeing. Since UP platforms are quite rare now, such path becomes unnecessary. Let's drop such specific-designed path directly instead. | ||||
CVE-2022-48647 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: sfc: fix TX channel offset when using legacy interrupts In legacy interrupt mode the tx_channel_offset was hardcoded to 1, but that's not correct if efx_sepparate_tx_channels is false. In that case, the offset is 0 because the tx queues are in the single existing channel at index 0, together with the rx queue. Without this fix, as soon as you try to send any traffic, it tries to get the tx queues from an uninitialized channel getting these errors: WARNING: CPU: 1 PID: 0 at drivers/net/ethernet/sfc/tx.c:540 efx_hard_start_xmit+0x12e/0x170 [sfc] [...] RIP: 0010:efx_hard_start_xmit+0x12e/0x170 [sfc] [...] Call Trace: <IRQ> dev_hard_start_xmit+0xd7/0x230 sch_direct_xmit+0x9f/0x360 __dev_queue_xmit+0x890/0xa40 [...] BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 [...] RIP: 0010:efx_hard_start_xmit+0x153/0x170 [sfc] [...] Call Trace: <IRQ> dev_hard_start_xmit+0xd7/0x230 sch_direct_xmit+0x9f/0x360 __dev_queue_xmit+0x890/0xa40 [...] | ||||
CVE-2022-48630 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: crypto: qcom-rng - fix infinite loop on requests not multiple of WORD_SZ The commit referenced in the Fixes tag removed the 'break' from the else branch in qcom_rng_read(), causing an infinite loop whenever 'max' is not a multiple of WORD_SZ. This can be reproduced e.g. by running: kcapi-rng -b 67 >/dev/null There are many ways to fix this without adding back the 'break', but they all seem more awkward than simply adding it back, so do just that. Tested on a machine with Qualcomm Amberwing processor. | ||||
CVE-2021-47657 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/virtio: Ensure that objs is not NULL in virtio_gpu_array_put_free() If virtio_gpu_object_shmem_init() fails (e.g. due to fault injection, as it happened in the bug report by syzbot), virtio_gpu_array_put_free() could be called with objs equal to NULL. Ensure that objs is not NULL in virtio_gpu_array_put_free(), or otherwise return from the function. | ||||
CVE-2021-47640 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Fix early region not updated correctly The shadow's page table is not updated when PTE_RPN_SHIFT is 24 and PAGE_SHIFT is 12. It not only causes false positives but also false negative as shown the following text. Fix it by bringing the logic of kasan_early_shadow_page_entry here. 1. False Positive: ================================================================== BUG: KASAN: vmalloc-out-of-bounds in pcpu_alloc+0x508/0xa50 Write of size 16 at addr f57f3be0 by task swapper/0/1 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.15.0-12267-gdebe436e77c7 #1 Call Trace: [c80d1c20] [c07fe7b8] dump_stack_lvl+0x4c/0x6c (unreliable) [c80d1c40] [c02ff668] print_address_description.constprop.0+0x88/0x300 [c80d1c70] [c02ff45c] kasan_report+0x1ec/0x200 [c80d1cb0] [c0300b20] kasan_check_range+0x160/0x2f0 [c80d1cc0] [c03018a4] memset+0x34/0x90 [c80d1ce0] [c0280108] pcpu_alloc+0x508/0xa50 [c80d1d40] [c02fd7bc] __kmem_cache_create+0xfc/0x570 [c80d1d70] [c0283d64] kmem_cache_create_usercopy+0x274/0x3e0 [c80d1db0] [c2036580] init_sd+0xc4/0x1d0 [c80d1de0] [c00044a0] do_one_initcall+0xc0/0x33c [c80d1eb0] [c2001624] kernel_init_freeable+0x2c8/0x384 [c80d1ef0] [c0004b14] kernel_init+0x24/0x170 [c80d1f10] [c001b26c] ret_from_kernel_thread+0x5c/0x64 Memory state around the buggy address: f57f3a80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f57f3b00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 >f57f3b80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ f57f3c00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f57f3c80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== 2. False Negative (with KASAN tests): ================================================================== Before fix: ok 45 - kmalloc_double_kzfree # vmalloc_oob: EXPECTATION FAILED at lib/test_kasan.c:1039 KASAN failure expected in "((volatile char *)area)[3100]", but none occurred not ok 46 - vmalloc_oob not ok 1 - kasan ================================================================== After fix: ok 1 - kasan | ||||
CVE-2021-47634 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix race condition between ctrl_cdev_ioctl and ubi_cdev_ioctl Hulk Robot reported a KASAN report about use-after-free: ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0x13d/0x160 Read of size 8 at addr ffff888035e37d98 by task ubiattach/1385 [...] Call Trace: klist_dec_and_del+0xa7/0x4a0 klist_put+0xc7/0x1a0 device_del+0x4d4/0xed0 cdev_device_del+0x1a/0x80 ubi_attach_mtd_dev+0x2951/0x34b0 [ubi] ctrl_cdev_ioctl+0x286/0x2f0 [ubi] Allocated by task 1414: device_add+0x60a/0x18b0 cdev_device_add+0x103/0x170 ubi_create_volume+0x1118/0x1a10 [ubi] ubi_cdev_ioctl+0xb7f/0x1ba0 [ubi] Freed by task 1385: cdev_device_del+0x1a/0x80 ubi_remove_volume+0x438/0x6c0 [ubi] ubi_cdev_ioctl+0xbf4/0x1ba0 [ubi] [...] ================================================================== The lock held by ctrl_cdev_ioctl is ubi_devices_mutex, but the lock held by ubi_cdev_ioctl is ubi->device_mutex. Therefore, the two locks can be concurrent. ctrl_cdev_ioctl contains two operations: ubi_attach and ubi_detach. ubi_detach is bug-free because it uses reference counting to prevent concurrency. However, uif_init and uif_close in ubi_attach may race with ubi_cdev_ioctl. uif_init will race with ubi_cdev_ioctl as in the following stack. cpu1 cpu2 cpu3 _______________________|________________________|______________________ ctrl_cdev_ioctl ubi_attach_mtd_dev uif_init ubi_cdev_ioctl ubi_create_volume cdev_device_add ubi_add_volume // sysfs exist kill_volumes ubi_cdev_ioctl ubi_remove_volume cdev_device_del // first free ubi_free_volume cdev_del // double free cdev_device_del And uif_close will race with ubi_cdev_ioctl as in the following stack. cpu1 cpu2 cpu3 _______________________|________________________|______________________ ctrl_cdev_ioctl ubi_attach_mtd_dev uif_init ubi_cdev_ioctl ubi_create_volume cdev_device_add ubi_debugfs_init_dev //error goto out_uif; uif_close kill_volumes ubi_cdev_ioctl ubi_remove_volume cdev_device_del // first free ubi_free_volume // double free The cause of this problem is that commit 714fb87e8bc0 make device "available" before it becomes accessible via sysfs. Therefore, we roll back the modification. We will fix the race condition between ubi device creation and udev by removing ubi_get_device in vol_attribute_show and dev_attribute_show.This avoids accessing uninitialized ubi_devices[ubi_num]. ubi_get_device is used to prevent devices from being deleted during sysfs execution. However, now kernfs ensures that devices will not be deleted before all reference counting are released. The key process is shown in the following stack. device_del device_remove_attrs device_remove_groups sysfs_remove_groups sysfs_remove_group remove_files kernfs_remove_by_name kernfs_remove_by_name_ns __kernfs_remove kernfs_drain | ||||
CVE-2021-47603 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: audit: improve robustness of the audit queue handling If the audit daemon were ever to get stuck in a stopped state the kernel's kauditd_thread() could get blocked attempting to send audit records to the userspace audit daemon. With the kernel thread blocked it is possible that the audit queue could grow unbounded as certain audit record generating events must be exempt from the queue limits else the system enter a deadlock state. This patch resolves this problem by lowering the kernel thread's socket sending timeout from MAX_SCHEDULE_TIMEOUT to HZ/10 and tweaks the kauditd_send_queue() function to better manage the various audit queues when connection problems occur between the kernel and the audit daemon. With this patch, the backlog may temporarily grow beyond the defined limits when the audit daemon is stopped and the system is under heavy audit pressure, but kauditd_thread() will continue to make progress and drain the queues as it would for other connection problems. For example, with the audit daemon put into a stopped state and the system configured to audit every syscall it was still possible to shutdown the system without a kernel panic, deadlock, etc.; granted, the system was slow to shutdown but that is to be expected given the extreme pressure of recording every syscall. The timeout value of HZ/10 was chosen primarily through experimentation and this developer's "gut feeling". There is likely no one perfect value, but as this scenario is limited in scope (root privileges would be needed to send SIGSTOP to the audit daemon), it is likely not worth exposing this as a tunable at present. This can always be done at a later date if it proves necessary. | ||||
CVE-2021-47567 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: powerpc/32: Fix hardlockup on vmap stack overflow Since the commit c118c7303ad5 ("powerpc/32: Fix vmap stack - Do not activate MMU before reading task struct") a vmap stack overflow results in a hard lockup. This is because emergency_ctx is still addressed with its virtual address allthough data MMU is not active anymore at that time. Fix it by using a physical address instead. | ||||
CVE-2021-47555 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: vlan: fix underflow for the real_dev refcnt Inject error before dev_hold(real_dev) in register_vlan_dev(), and execute the following testcase: ip link add dev dummy1 type dummy ip link add name dummy1.100 link dummy1 type vlan id 100 ip link del dev dummy1 When the dummy netdevice is removed, we will get a WARNING as following: ======================================================================= refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 2 PID: 0 at lib/refcount.c:31 refcount_warn_saturate+0xbf/0x1e0 and an endless loop of: ======================================================================= unregister_netdevice: waiting for dummy1 to become free. Usage count = -1073741824 That is because dev_put(real_dev) in vlan_dev_free() be called without dev_hold(real_dev) in register_vlan_dev(). It makes the refcnt of real_dev underflow. Move the dev_hold(real_dev) to vlan_dev_init() which is the call-back of ndo_init(). That makes dev_hold() and dev_put() for vlan's real_dev symmetrical. | ||||
CVE-2021-47553 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 6.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched/scs: Reset task stack state in bringup_cpu() To hot unplug a CPU, the idle task on that CPU calls a few layers of C code before finally leaving the kernel. When KASAN is in use, poisoned shadow is left around for each of the active stack frames, and when shadow call stacks are in use. When shadow call stacks (SCS) are in use the task's saved SCS SP is left pointing at an arbitrary point within the task's shadow call stack. When a CPU is offlined than onlined back into the kernel, this stale state can adversely affect execution. Stale KASAN shadow can alias new stackframes and result in bogus KASAN warnings. A stale SCS SP is effectively a memory leak, and prevents a portion of the shadow call stack being used. Across a number of hotplug cycles the idle task's entire shadow call stack can become unusable. We previously fixed the KASAN issue in commit: e1b77c92981a5222 ("sched/kasan: remove stale KASAN poison after hotplug") ... by removing any stale KASAN stack poison immediately prior to onlining a CPU. Subsequently in commit: f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled") ... the refactoring left the KASAN and SCS cleanup in one-time idle thread initialization code rather than something invoked prior to each CPU being onlined, breaking both as above. We fixed SCS (but not KASAN) in commit: 63acd42c0d4942f7 ("sched/scs: Reset the shadow stack when idle_task_exit") ... but as this runs in the context of the idle task being offlined it's potentially fragile. To fix these consistently and more robustly, reset the SCS SP and KASAN shadow of a CPU's idle task immediately before we online that CPU in bringup_cpu(). This ensures the idle task always has a consistent state when it is running, and removes the need to so so when exiting an idle task. Whenever any thread is created, dup_task_struct() will give the task a stack which is free of KASAN shadow, and initialize the task's SCS SP, so there's no need to specially initialize either for idle thread within init_idle(), as this was only necessary to handle hotplug cycles. I've tested this on arm64 with: * gcc 11.1.0, defconfig +KASAN_INLINE, KASAN_STACK * clang 12.0.0, defconfig +KASAN_INLINE, KASAN_STACK, SHADOW_CALL_STACK ... offlining and onlining CPUS with: | while true; do | for C in /sys/devices/system/cpu/cpu*/online; do | echo 0 > $C; | echo 1 > $C; | done | done | ||||
CVE-2021-47546 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix memory leak in fib6_rule_suppress The kernel leaks memory when a `fib` rule is present in IPv6 nftables firewall rules and a suppress_prefix rule is present in the IPv6 routing rules (used by certain tools such as wg-quick). In such scenarios, every incoming packet will leak an allocation in `ip6_dst_cache` slab cache. After some hours of `bpftrace`-ing and source code reading, I tracked down the issue to ca7a03c41753 ("ipv6: do not free rt if FIB_LOOKUP_NOREF is set on suppress rule"). The problem with that change is that the generic `args->flags` always have `FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag `RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not decreasing the refcount when needed. How to reproduce: - Add the following nftables rule to a prerouting chain: meta nfproto ipv6 fib saddr . mark . iif oif missing drop This can be done with: sudo nft create table inet test sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }' sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop - Run: sudo ip -6 rule add table main suppress_prefixlength 0 - Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase with every incoming ipv6 packet. This patch exposes the protocol-specific flags to the protocol specific `suppress` function, and check the protocol-specific `flags` argument for RT6_LOOKUP_F_DST_NOREF instead of the generic FIB_LOOKUP_NOREF when decreasing the refcount, like this. [1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71 [2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99 | ||||
CVE-2021-47538 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 3.3 Low |
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix rxrpc_local leak in rxrpc_lookup_peer() Need to call rxrpc_put_local() for peer candidate before kfree() as it holds a ref to rxrpc_local. [DH: v2: Changed to abstract the peer freeing code out into a function] | ||||
CVE-2021-47513 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: dsa: felix: Fix memory leak in felix_setup_mmio_filtering Avoid a memory leak if there is not a CPU port defined. Addresses-Coverity-ID: 1492897 ("Resource leak") Addresses-Coverity-ID: 1492899 ("Resource leak") |