Filtered by CWE-770
Total 1286 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-32032 2025-04-08 7.5 High
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2. A vulnerability in Apollo Router allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically due to internal optimizations being frequently bypassed. The query planner includes an optimization that significantly speeds up planning for applicable GraphQL selections. However, queries with deeply nested and reused named fragments can generate many selections where this optimization does not apply, leading to significantly longer planning times. Because the query planner does not enforce a timeout, a small number of such queries can exhaust router's thread pool, rendering it inoperable. This could lead to excessive resource consumption and denial of service. This has been remediated in apollo-router versions 1.61.2 and 2.1.1.
CVE-2025-32031 2025-04-08 7.5 High
Apollo Gateway provides utilities for combining multiple GraphQL microservices into a single GraphQL endpoint. Prior to 2.10.1, a vulnerability in Apollo Gateway allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically due to internal optimizations being frequently bypassed. The query planner includes an optimization that significantly speeds up planning for applicable GraphQL selections. However, queries with deeply nested and reused named fragments can generate many selections where this optimization does not apply, leading to significantly longer planning times. Because the query planner does not enforce a timeout, a small number of such queries can render gateway inoperable. This could lead to excessive resource consumption and denial of service. This has been remediated in @apollo/gateway version 2.10.1.
CVE-2025-32024 2025-04-08 N/A
bep/imagemeta is a Go library for reading EXIF, IPTC and XMP image meta data from JPEG, TIFF, PNG, and WebP files. The EXIF data format allows for defining excessively large data structures in relatively small payloads. Before v0.10.0, If you didn't trust the input images, this could be abused to construct denial-of-service attacks. v0.10.0 added LimitNumTags (default 5000) and LimitTagSize (default 10000) options.
CVE-2025-32034 2025-04-08 7.5 High
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2. Prior to 1.61.2 and 2.1.1, a vulnerability in Apollo Router allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically during named fragment expansion. Named fragments were being expanded once per fragment spread during query planning, leading to exponential resource usage when deeply nested and reused fragments were involved. This could lead to excessive resource consumption and denial of service. This has been remediated in apollo-router versions 1.61.2 and 2.1.1.
CVE-2025-32025 2025-04-08 N/A
bep/imagemeta is a Go library for reading EXIF, IPTC and XMP image meta data from JPEG, TIFF, PNG, and WebP files. The buffer created for parsing metadata for PNG and WebP images was only bounded by their input data type, which could lead to potentially large memory allocation, and unreasonably high for image metadata. Before v0.11.0, If you didn't trust the input images, this could be abused to construct denial-of-service attacks. v0.11.0 added a 10 MB upper limit.
CVE-2025-31496 2025-04-08 7.5 High
apollo-compiler is a query-based compiler for the GraphQL query language. Prior to 1.27.0, a vulnerability in Apollo Compiler allowed queries with deeply nested and reused named fragments to be prohibitively expensive to validate. Named fragments were being processed once per fragment spread in some cases during query validation, leading to exponential resource usage when deeply nested and reused fragments were involved. This could lead to excessive resource consumption and denial of service in applications. This vulnerability is fixed in 1.27.0.
CVE-2023-22403 1 Juniper 4 Junos, Qfx10002, Qfx10008 and 1 more 2025-04-07 7.5 High
An Allocation of Resources Without Limits or Throttling vulnerability in the Packet Forwarding Engine (PFE) of Juniper Networks Junos OS allows a network-based, unauthenticated attacker to cause a Denial of Service (DoS). On QFX10K Series, Inter-Chassis Control Protocol (ICCP) is used in MC-LAG topologies to exchange control information between the devices in the topology. ICCP connection flaps and sync issues will be observed due to excessive specific traffic to the local device. This issue affects Juniper Networks Junos OS on QFX10K Series: * All versions prior to 20.2R3-S7; * 20.4 versions prior to 20.4R3-S4; * 21.1 versions prior to 21.1R3-S3; * 21.2 versions prior to 21.2R3-S1; * 21.3 versions prior to 21.3R3; * 21.4 versions prior to 21.4R3; * 22.1 versions prior to 22.1R2.
CVE-2023-22397 1 Juniper 2 Junos Os Evolved, Ptx10003 2025-04-07 6.1 Medium
An Allocation of Resources Without Limits or Throttling weakness in the memory management of the Packet Forwarding Engine (PFE) on Juniper Networks Junos OS Evolved PTX10003 Series devices allows an adjacently located attacker who has established certain preconditions and knowledge of the environment to send certain specific genuine packets to begin a Time-of-check Time-of-use (TOCTOU) Race Condition attack which will cause a memory leak to begin. Once this condition begins, and as long as the attacker is able to sustain the offending traffic, a Distributed Denial of Service (DDoS) event occurs. As a DDoS event, the offending packets sent by the attacker will continue to flow from one device to another as long as they are received and processed by any devices, ultimately causing a cascading outage to any vulnerable devices. Devices not vulnerable to the memory leak will process and forward the offending packet(s) to neighboring devices. Due to internal anti-flood security controls and mechanisms reaching their maximum limit of response in the worst-case scenario, all affected Junos OS Evolved devices will reboot in as little as 1.5 days. Reboots to restore services cannot be avoided once the memory leak begins. The device will self-recover after crashing and rebooting. Operator intervention isn't required to restart the device. This issue affects: Juniper Networks Junos OS Evolved on PTX10003: All versions prior to 20.4R3-S4-EVO; 21.3 versions prior to 21.3R3-S1-EVO; 21.4 versions prior to 21.4R2-S2-EVO, 21.4R3-EVO; 22.1 versions prior to 22.1R1-S2-EVO, 22.1R2-EVO; 22.2 versions prior to 22.2R2-EVO. To check memory, customers may VTY to the PFE first then execute the following show statement: show jexpr jtm ingress-main-memory chip 255 | no-more Alternatively one may execute from the RE CLI: request pfe execute target fpc0 command "show jexpr jtm ingress-main-memory chip 255 | no-more" Iteration 1: Example output: Mem type: NH, alloc type: JTM 136776 bytes used (max 138216 bytes used) 911568 bytes available (909312 bytes from free pages) Iteration 2: Example output: Mem type: NH, alloc type: JTM 137288 bytes used (max 138216 bytes used) 911056 bytes available (909312 bytes from free pages) The same can be seen in the CLI below, assuming the scale does not change: show npu memory info Example output: FPC0:NPU16 mem-util-jnh-nh-size 2097152 FPC0:NPU16 mem-util-jnh-nh-allocated 135272 FPC0:NPU16 mem-util-jnh-nh-utilization 6
CVE-2025-32049 1 Redhat 1 Enterprise Linux 2025-04-07 7.5 High
A flaw was found in libsoup. The SoupWebsocketConnection may accept a large WebSocket message, which may cause libsoup to allocate memory and lead to a denial of service (DoS).
CVE-2025-24317 2025-04-07 N/A
Allocation of resources without limits or throttling issue exists in HMI ViewJet C-more series and HMI GC-A2 series, which may allow a remote unauthenticated attacker to cause a denial-of-service (DoS) condition.
CVE-2024-12254 2 Python Software Foundation, Redhat 3 Cpython, Enterprise Linux, Rhel Eus 2025-04-04 7.5 High
Starting in Python 3.12.0, the asyncio._SelectorSocketTransport.writelines() method would not "pause" writing and signal to the Protocol to drain the buffer to the wire once the write buffer reached the "high-water mark". Because of this, Protocols would not periodically drain the write buffer potentially leading to memory exhaustion. This vulnerability likely impacts a small number of users, you must be using Python 3.12.0 or later, on macOS or Linux, using the asyncio module with protocols, and using .writelines() method which had new zero-copy-on-write behavior in Python 3.12.0 and later. If not all of these factors are true then your usage of Python is unaffected.
CVE-2021-36630 1 Ruckuswireless 8 Sz-100, Sz-100 Firmware, Sz-144 and 5 more 2025-04-04 7.5 High
DDOS reflection amplification vulnerability in eAut module of Ruckus Wireless SmartZone controller that allows remote attackers to perform DOS attacks via crafted request.
CVE-2021-47130 1 Linux 1 Linux Kernel 2025-04-04 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix freeing unallocated p2pmem In case p2p device was found but the p2p pool is empty, the nvme target is still trying to free the sgl from the p2p pool instead of the regular sgl pool and causing a crash (BUG() is called). Instead, assign the p2p_dev for the request only if it was allocated from p2p pool. This is the crash that was caused: [Sun May 30 19:13:53 2021] ------------[ cut here ]------------ [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! [Sun May 30 19:13:53 2021] invalid opcode: 0000 [#1] SMP PTI ... [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! ... [Sun May 30 19:13:53 2021] RIP: 0010:gen_pool_free_owner+0xa8/0xb0 ... [Sun May 30 19:13:53 2021] Call Trace: [Sun May 30 19:13:53 2021] ------------[ cut here ]------------ [Sun May 30 19:13:53 2021] pci_free_p2pmem+0x2b/0x70 [Sun May 30 19:13:53 2021] pci_p2pmem_free_sgl+0x4f/0x80 [Sun May 30 19:13:53 2021] nvmet_req_free_sgls+0x1e/0x80 [nvmet] [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! [Sun May 30 19:13:53 2021] nvmet_rdma_release_rsp+0x4e/0x1f0 [nvmet_rdma] [Sun May 30 19:13:53 2021] nvmet_rdma_send_done+0x1c/0x60 [nvmet_rdma]
CVE-2024-35969 3 Debian, Linux, Redhat 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more 2025-04-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it still means hlist_for_each_entry_rcu can return an item that got removed from the list. The memory itself of such item is not freed thanks to RCU but nothing guarantees the actual content of the memory is sane. In particular, the reference count can be zero. This can happen if ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough timing, this can happen: 1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry. 2. Then, the whole ipv6_del_addr is executed for the given entry. The reference count drops to zero and kfree_rcu is scheduled. 3. ipv6_get_ifaddr continues and tries to increments the reference count (in6_ifa_hold). 4. The rcu is unlocked and the entry is freed. 5. The freed entry is returned. Prevent increasing of the reference count in such case. The name in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe. [ 41.506330] refcount_t: addition on 0; use-after-free. [ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130 [ 41.507413] Modules linked in: veth bridge stp llc [ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14 [ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) [ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130 [ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff [ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282 [ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000 [ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900 [ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff [ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000 [ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48 [ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000 [ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0 [ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 41.516799] Call Trace: [ 41.517037] <TASK> [ 41.517249] ? __warn+0x7b/0x120 [ 41.517535] ? refcount_warn_saturate+0xa5/0x130 [ 41.517923] ? report_bug+0x164/0x190 [ 41.518240] ? handle_bug+0x3d/0x70 [ 41.518541] ? exc_invalid_op+0x17/0x70 [ 41.520972] ? asm_exc_invalid_op+0x1a/0x20 [ 41.521325] ? refcount_warn_saturate+0xa5/0x130 [ 41.521708] ipv6_get_ifaddr+0xda/0xe0 [ 41.522035] inet6_rtm_getaddr+0x342/0x3f0 [ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10 [ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0 [ 41.523102] ? netlink_unicast+0x30f/0x390 [ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 41.523832] netlink_rcv_skb+0x53/0x100 [ 41.524157] netlink_unicast+0x23b/0x390 [ 41.524484] netlink_sendmsg+0x1f2/0x440 [ 41.524826] __sys_sendto+0x1d8/0x1f0 [ 41.525145] __x64_sys_sendto+0x1f/0x30 [ 41.525467] do_syscall_64+0xa5/0x1b0 [ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a [ 41.526213] RIP: 0033:0x7fbc4cfcea9a [ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89 [ 41.527942] RSP: 002b:00007f ---truncated---
CVE-2024-6600 1 Mozilla 2 Firefox, Thunderbird 2025-04-04 6.3 Medium
Due to large allocation checks in Angle for GLSL shaders being too lenient an out-of-bounds access could occur when allocating more than 8192 ints in private shader memory on mac OS. This vulnerability affects Firefox < 128, Firefox ESR < 115.13, Thunderbird < 115.13, and Thunderbird < 128.
CVE-2024-12537 1 Openwebui 1 Open Webui 2025-04-04 7.5 High
In version 0.3.32 of open-webui/open-webui, the absence of authentication mechanisms allows any unauthenticated attacker to access the `api/v1/utils/code/format` endpoint. If a malicious actor sends a POST request with an excessively high volume of content, the server could become completely unresponsive. This could lead to severe performance issues, causing the server to become unresponsive or experience significant degradation, ultimately resulting in service interruptions for legitimate users.
CVE-2022-20494 1 Google 1 Android 2025-04-03 5.5 Medium
In AutomaticZenRule of AutomaticZenRule.java, there is a possible persistent DoS due to resource exhaustion. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-243794204
CVE-2022-20492 1 Google 1 Android 2025-04-03 7.8 High
In many functions of AutomaticZenRule.java, there is a possible failure to persist permissions settings due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12L Android-13Android ID: A-242704043
CVE-2001-1388 2 Netfilter, Redhat 2 Iptables, Linux 2025-04-03 N/A
iptables before 1.2.4 does not accurately convert rate limits that are specified on the command line, which could allow attackers or users to generate more or less traffic than intended by the administrator.
CVE-2005-4650 1 Joomla 1 Joomla\! 2025-04-03 5.3 Medium
Joomla! 1.03 does not restrict the number of "Search" Mambots, which allows remote attackers to cause a denial of service (resource consumption) via a large number of Search Mambots.