Filtered by vendor Linux Subscriptions
Total 15922 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40363 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv6: fix field-spanning memcpy warning in AH output Fix field-spanning memcpy warnings in ah6_output() and ah6_output_done() where extension headers are copied to/from IPv6 address fields, triggering fortify-string warnings about writes beyond the 16-byte address fields. memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16) WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439 The warnings are false positives as the extension headers are intentionally placed after the IPv6 header in memory. Fix by properly copying addresses and extension headers separately, and introduce helper functions to avoid code duplication.
CVE-2025-68168 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: fix uninitialized waitqueue in transaction manager The transaction manager initialization in txInit() was not properly initializing TxBlock[0].waitor waitqueue, causing a crash when txEnd(0) is called on read-only filesystems. When a filesystem is mounted read-only, txBegin() returns tid=0 to indicate no transaction. However, txEnd(0) still gets called and tries to access TxBlock[0].waitor via tid_to_tblock(0), but this waitqueue was never initialized because the initialization loop started at index 1 instead of 0. This causes a 'non-static key' lockdep warning and system crash: INFO: trying to register non-static key in txEnd Fix by ensuring all transaction blocks including TxBlock[0] have their waitqueues properly initialized during txInit().
CVE-2025-68169 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used.
CVE-2025-68171 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure XFD state on signal delivery Sean reported [1] the following splat when running KVM tests: WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70 Call Trace: <TASK> fpu__clear_user_states+0x9c/0x100 arch_do_signal_or_restart+0x142/0x210 exit_to_user_mode_loop+0x55/0x100 do_syscall_64+0x205/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Chao further identified [2] a reproducible scenario involving signal delivery: a non-AMX task is preempted by an AMX-enabled task which modifies the XFD MSR. When the non-AMX task resumes and reloads XSTATE with init values, a warning is triggered due to a mismatch between fpstate::xfd and the CPU's current XFD state. fpu__clear_user_states() does not currently re-synchronize the XFD state after such preemption. Invoke xfd_update_state() which detects and corrects the mismatch if there is a dynamic feature. This also benefits the sigreturn path, as fpu__restore_sig() may call fpu__clear_user_states() when the sigframe is inaccessible. [ dhansen: minor changelog munging ]
CVE-2025-68179 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390: Disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP As reported by Luiz Capitulino enabling HVO on s390 leads to reproducible crashes. The problem is that kernel page tables are modified without flushing corresponding TLB entries. Even if it looks like the empty flush_tlb_all() implementation on s390 is the problem, it is actually a different problem: on s390 it is not allowed to replace an active/valid page table entry with another valid page table entry without the detour over an invalid entry. A direct replacement may lead to random crashes and/or data corruption. In order to invalidate an entry special instructions have to be used (e.g. ipte or idte). Alternatively there are also special instructions available which allow to replace a valid entry with a different valid entry (e.g. crdte or cspg). Given that the HVO code currently does not provide the hooks to allow for an implementation which is compliant with the s390 architecture requirements, disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP again, which is basically a revert of the original patch which enabled it.
CVE-2025-68181 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Remove calls to drm_put_dev() Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd should be done by devres. However, drm_put_dev() is still in the probe error and device remove paths. When the driver fails to probe warnings like the following are shown because devres is trying to drm_put_dev() after the driver already did it. [ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22 [ 5.649605] ------------[ cut here ]------------ [ 5.649607] refcount_t: underflow; use-after-free. [ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 (cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4)
CVE-2025-68183 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr Currently when both IMA and EVM are in fix mode, the IMA signature will be reset to IMA hash if a program first stores IMA signature in security.ima and then writes/removes some other security xattr for the file. For example, on Fedora, after booting the kernel with "ima_appraise=fix evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima, installing/reinstalling a package will not make good reference IMA signature generated. Instead IMA hash is generated, # getfattr -m - -d -e hex /usr/bin/bash # file: usr/bin/bash security.ima=0x0404... This happens because when setting security.selinux, the IMA_DIGSIG flag that had been set early was cleared. As a result, IMA hash is generated when the file is closed. Similarly, IMA signature can be cleared on file close after removing security xattr like security.evm or setting/removing ACL. Prevent replacing the IMA file signature with a file hash, by preventing the IMA_DIGSIG flag from being reset. Here's a minimal C reproducer which sets security.selinux as the last step which can also replaced by removing security.evm or setting ACL, #include <stdio.h> #include <sys/xattr.h> #include <fcntl.h> #include <unistd.h> #include <string.h> #include <stdlib.h> int main() { const char* file_path = "/usr/sbin/test_binary"; const char* hex_string = "030204d33204490066306402304"; int length = strlen(hex_string); char* ima_attr_value; int fd; fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644); if (fd == -1) { perror("Error opening file"); return 1; } ima_attr_value = (char*)malloc(length / 2 ); for (int i = 0, j = 0; i < length; i += 2, j++) { sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]); } if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } const char* selinux_value= "system_u:object_r:bin_t:s0"; if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) { perror("Error setting extended attribute"); close(fd); return 1; } close(fd); return 0; }
CVE-2025-68184 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Disable AFBC support on Mediatek DRM driver Commit c410fa9b07c3 ("drm/mediatek: Add AFBC support to Mediatek DRM driver") added AFBC support to Mediatek DRM and enabled the 32x8/split/sparse modifier. However, this is currently broken on Mediatek MT8188 (Genio 700 EVK platform); tested using upstream Kernel and Mesa (v25.2.1), AFBC is used by default since Mesa v25.0. Kernel trace reports vblank timeouts constantly, and the render is garbled: ``` [CRTC:62:crtc-0] vblank wait timed out WARNING: CPU: 7 PID: 70 at drivers/gpu/drm/drm_atomic_helper.c:1835 drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c [...] Hardware name: MediaTek Genio-700 EVK (DT) Workqueue: events_unbound commit_work pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c lr : drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c sp : ffff80008337bca0 x29: ffff80008337bcd0 x28: 0000000000000061 x27: 0000000000000000 x26: 0000000000000001 x25: 0000000000000000 x24: ffff0000c9dcc000 x23: 0000000000000001 x22: 0000000000000000 x21: ffff0000c66f2f80 x20: ffff0000c0d7d880 x19: 0000000000000000 x18: 000000000000000a x17: 000000040044ffff x16: 005000f2b5503510 x15: 0000000000000000 x14: 0000000000000000 x13: 74756f2064656d69 x12: 742074696177206b x11: 0000000000000058 x10: 0000000000000018 x9 : ffff800082396a70 x8 : 0000000000057fa8 x7 : 0000000000000cce x6 : ffff8000823eea70 x5 : ffff0001fef5f408 x4 : ffff80017ccee000 x3 : ffff0000c12cb480 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c12cb480 Call trace: drm_atomic_helper_wait_for_vblanks.part.0+0x24c/0x27c (P) drm_atomic_helper_commit_tail_rpm+0x64/0x80 commit_tail+0xa4/0x1a4 commit_work+0x14/0x20 process_one_work+0x150/0x290 worker_thread+0x2d0/0x3ec kthread+0x12c/0x210 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- ``` Until this gets fixed upstream, disable AFBC support on this platform, as it's currently broken with upstream Mesa.
CVE-2025-68186 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up The function ring_buffer_map_get_reader() is a bit more strict than the other get reader functions, and except for certain situations the rb_get_reader_page() should not return NULL. If it does, it triggers a warning. This warning was triggering but after looking at why, it was because another acceptable situation was happening and it wasn't checked for. If the reader catches up to the writer and there's still data to be read on the reader page, then the rb_get_reader_page() will return NULL as there's no new page to get. In this situation, the reader page should not be updated and no warning should trigger.
CVE-2025-68189 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix GEM free for imported dma-bufs Imported dma-bufs also have obj->resv != &obj->_resv. So we should check both this condition in addition to flags for handling the _NO_SHARE case. Fixes this splat that was reported with IRIS video playback: ------------[ cut here ]------------ WARNING: CPU: 3 PID: 2040 at drivers/gpu/drm/msm/msm_gem.c:1127 msm_gem_free_object+0x1f8/0x264 [msm] CPU: 3 UID: 1000 PID: 2040 Comm: .gnome-shell-wr Not tainted 6.17.0-rc7 #1 PREEMPT pstate: 81400005 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : msm_gem_free_object+0x1f8/0x264 [msm] lr : msm_gem_free_object+0x138/0x264 [msm] sp : ffff800092a1bb30 x29: ffff800092a1bb80 x28: ffff800092a1bce8 x27: ffffbc702dbdbe08 x26: 0000000000000008 x25: 0000000000000009 x24: 00000000000000a6 x23: ffff00083c72f850 x22: ffff00083c72f868 x21: ffff00087e69f200 x20: ffff00087e69f330 x19: ffff00084d157ae0 x18: 0000000000000000 x17: 0000000000000000 x16: ffffbc704bd46b80 x15: 0000ffffd0959540 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: ffffbc702e6cdb48 x10: 0000000000000000 x9 : 000000000000003f x8 : ffff800092a1ba90 x7 : 0000000000000000 x6 : 0000000000000020 x5 : ffffbc704bd46c40 x4 : fffffdffe102cf60 x3 : 0000000000400032 x2 : 0000000000020000 x1 : ffff00087e6978e8 x0 : ffff00087e6977e8 Call trace: msm_gem_free_object+0x1f8/0x264 [msm] (P) drm_gem_object_free+0x1c/0x30 [drm] drm_gem_object_handle_put_unlocked+0x138/0x150 [drm] drm_gem_object_release_handle+0x5c/0xcc [drm] drm_gem_handle_delete+0x68/0xbc [drm] drm_gem_close_ioctl+0x34/0x40 [drm] drm_ioctl_kernel+0xc0/0x130 [drm] drm_ioctl+0x360/0x4e0 [drm] __arm64_sys_ioctl+0xac/0x104 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xec el0t_64_sync_handler+0xa0/0xe4 el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ Patchwork: https://patchwork.freedesktop.org/patch/676273/
CVE-2025-68192 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: usb: qmi_wwan: initialize MAC header offset in qmimux_rx_fixup Raw IP packets have no MAC header, leaving skb->mac_header uninitialized. This can trigger kernel panics on ARM64 when xfrm or other subsystems access the offset due to strict alignment checks. Initialize the MAC header to prevent such crashes. This can trigger kernel panics on ARM when running IPsec over the qmimux0 interface. Example trace: Internal error: Oops: 000000009600004f [#1] SMP CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.34-gbe78e49cb433 #1 Hardware name: LS1028A RDB Board (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : xfrm_input+0xde8/0x1318 lr : xfrm_input+0x61c/0x1318 sp : ffff800080003b20 Call trace: xfrm_input+0xde8/0x1318 xfrm6_rcv+0x38/0x44 xfrm6_esp_rcv+0x48/0xa8 ip6_protocol_deliver_rcu+0x94/0x4b0 ip6_input_finish+0x44/0x70 ip6_input+0x44/0xc0 ipv6_rcv+0x6c/0x114 __netif_receive_skb_one_core+0x5c/0x8c __netif_receive_skb+0x18/0x60 process_backlog+0x78/0x17c __napi_poll+0x38/0x180 net_rx_action+0x168/0x2f0
CVE-2025-68193 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Add devm release action to safely tear down CT When a buffer object (BO) is allocated with the XE_BO_FLAG_GGTT_INVALIDATE flag, the driver initiates TLB invalidation requests via the CTB mechanism while releasing the BO. However a premature release of the CTB BO can lead to system crashes, as observed in: Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:h2g_write+0x2f3/0x7c0 [xe] Call Trace: guc_ct_send_locked+0x8b/0x670 [xe] xe_guc_ct_send_locked+0x19/0x60 [xe] send_tlb_invalidation+0xb4/0x460 [xe] xe_gt_tlb_invalidation_ggtt+0x15e/0x2e0 [xe] ggtt_invalidate_gt_tlb.part.0+0x16/0x90 [xe] ggtt_node_remove+0x110/0x140 [xe] xe_ggtt_node_remove+0x40/0xa0 [xe] xe_ggtt_remove_bo+0x87/0x250 [xe] Introduce a devm-managed release action during xe_guc_ct_init() and xe_guc_ct_init_post_hwconfig() to ensure proper CTB disablement before resource deallocation, preventing the use-after-free scenario.
CVE-2025-68197 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap() With older FW, we may get the ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER for FW trace data type that has not been initialized. This will result in a crash in bnxt_bs_trace_type_wrap(). Add a guard to check for a valid magic_byte pointer before proceeding.
CVE-2025-68198 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crash: fix crashkernel resource shrink When crashkernel is configured with a high reservation, shrinking its value below the low crashkernel reservation causes two issues: 1. Invalid crashkernel resource objects 2. Kernel crash if crashkernel shrinking is done twice For example, with crashkernel=200M,high, the kernel reserves 200MB of high memory and some default low memory (say 256MB). The reservation appears as: cat /proc/iomem | grep -i crash af000000-beffffff : Crash kernel 433000000-43f7fffff : Crash kernel If crashkernel is then shrunk to 50MB (echo 52428800 > /sys/kernel/kexec_crash_size), /proc/iomem still shows 256MB reserved: af000000-beffffff : Crash kernel Instead, it should show 50MB: af000000-b21fffff : Crash kernel Further shrinking crashkernel to 40MB causes a kernel crash with the following trace (x86): BUG: kernel NULL pointer dereference, address: 0000000000000038 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI <snip...> Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? __release_resource+0xd/0xb0 release_resource+0x26/0x40 __crash_shrink_memory+0xe5/0x110 crash_shrink_memory+0x12a/0x190 kexec_crash_size_store+0x41/0x80 kernfs_fop_write_iter+0x141/0x1f0 vfs_write+0x294/0x460 ksys_write+0x6d/0xf0 <snip...> This happens because __crash_shrink_memory()/kernel/crash_core.c incorrectly updates the crashk_res resource object even when crashk_low_res should be updated. Fix this by ensuring the correct crashkernel resource object is updated when shrinking crashkernel memory.
CVE-2025-68202 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix unsafe locking in the scx_dump_state() For built with CONFIG_PREEMPT_RT=y kernels, the dump_lock will be converted sleepable spinlock and not disable-irq, so the following scenarios occur: inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. irq_work/0/27 [HC0[0]:SC0[0]:HE1:SE1] takes: (&rq->__lock){?...}-{2:2}, at: raw_spin_rq_lock_nested+0x2b/0x40 {IN-HARDIRQ-W} state was registered at: lock_acquire+0x1e1/0x510 _raw_spin_lock_nested+0x42/0x80 raw_spin_rq_lock_nested+0x2b/0x40 sched_tick+0xae/0x7b0 update_process_times+0x14c/0x1b0 tick_periodic+0x62/0x1f0 tick_handle_periodic+0x48/0xf0 timer_interrupt+0x55/0x80 __handle_irq_event_percpu+0x20a/0x5c0 handle_irq_event_percpu+0x18/0xc0 handle_irq_event+0xb5/0x150 handle_level_irq+0x220/0x460 __common_interrupt+0xa2/0x1e0 common_interrupt+0xb0/0xd0 asm_common_interrupt+0x2b/0x40 _raw_spin_unlock_irqrestore+0x45/0x80 __setup_irq+0xc34/0x1a30 request_threaded_irq+0x214/0x2f0 hpet_time_init+0x3e/0x60 x86_late_time_init+0x5b/0xb0 start_kernel+0x308/0x410 x86_64_start_reservations+0x1c/0x30 x86_64_start_kernel+0x96/0xa0 common_startup_64+0x13e/0x148 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&rq->__lock); <Interrupt> lock(&rq->__lock); *** DEADLOCK *** stack backtrace: CPU: 0 UID: 0 PID: 27 Comm: irq_work/0 Call Trace: <TASK> dump_stack_lvl+0x8c/0xd0 dump_stack+0x14/0x20 print_usage_bug+0x42e/0x690 mark_lock.part.44+0x867/0xa70 ? __pfx_mark_lock.part.44+0x10/0x10 ? string_nocheck+0x19c/0x310 ? number+0x739/0x9f0 ? __pfx_string_nocheck+0x10/0x10 ? __pfx_check_pointer+0x10/0x10 ? kvm_sched_clock_read+0x15/0x30 ? sched_clock_noinstr+0xd/0x20 ? local_clock_noinstr+0x1c/0xe0 __lock_acquire+0xc4b/0x62b0 ? __pfx_format_decode+0x10/0x10 ? __pfx_string+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 ? __pfx_vsnprintf+0x10/0x10 lock_acquire+0x1e1/0x510 ? raw_spin_rq_lock_nested+0x2b/0x40 ? __pfx_lock_acquire+0x10/0x10 ? dump_line+0x12e/0x270 ? raw_spin_rq_lock_nested+0x20/0x40 _raw_spin_lock_nested+0x42/0x80 ? raw_spin_rq_lock_nested+0x2b/0x40 raw_spin_rq_lock_nested+0x2b/0x40 scx_dump_state+0x3b3/0x1270 ? finish_task_switch+0x27e/0x840 scx_ops_error_irq_workfn+0x67/0x80 irq_work_single+0x113/0x260 irq_work_run_list.part.3+0x44/0x70 run_irq_workd+0x6b/0x90 ? __pfx_run_irq_workd+0x10/0x10 smpboot_thread_fn+0x529/0x870 ? __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x305/0x3f0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x40/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This commit therefore use rq_lock_irqsave/irqrestore() to replace rq_lock/unlock() in the scx_dump_state().
CVE-2025-68204 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pmdomain: arm: scmi: Fix genpd leak on provider registration failure If of_genpd_add_provider_onecell() fails during probe, the previously created generic power domains are not removed, leading to a memory leak and potential kernel crash later in genpd_debug_add(). Add proper error handling to unwind the initialized domains before returning from probe to ensure all resources are correctly released on failure. Example crash trace observed without this fix: | Unable to handle kernel paging request at virtual address fffffffffffffc70 | CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.18.0-rc1 #405 PREEMPT | Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform | pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : genpd_debug_add+0x2c/0x160 | lr : genpd_debug_init+0x74/0x98 | Call trace: | genpd_debug_add+0x2c/0x160 (P) | genpd_debug_init+0x74/0x98 | do_one_initcall+0xd0/0x2d8 | do_initcall_level+0xa0/0x140 | do_initcalls+0x60/0xa8 | do_basic_setup+0x28/0x40 | kernel_init_freeable+0xe8/0x170 | kernel_init+0x2c/0x140 | ret_from_fork+0x10/0x20
CVE-2025-68206 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_ct: add seqadj extension for natted connections Sequence adjustment may be required for FTP traffic with PASV/EPSV modes. due to need to re-write packet payload (IP, port) on the ftp control connection. This can require changes to the TCP length and expected seq / ack_seq. The easiest way to reproduce this issue is with PASV mode. Example ruleset: table inet ftp_nat { ct helper ftp_helper { type "ftp" protocol tcp l3proto inet } chain prerouting { type filter hook prerouting priority 0; policy accept; tcp dport 21 ct state new ct helper set "ftp_helper" } } table ip nat { chain prerouting { type nat hook prerouting priority -100; policy accept; tcp dport 21 dnat ip prefix to ip daddr map { 192.168.100.1 : 192.168.13.2/32 } } chain postrouting { type nat hook postrouting priority 100 ; policy accept; tcp sport 21 snat ip prefix to ip saddr map { 192.168.13.2 : 192.168.100.1/32 } } } Note that the ftp helper gets assigned *after* the dnat setup. The inverse (nat after helper assign) is handled by an existing check in nf_nat_setup_info() and will not show the problem. Topoloy: +-------------------+ +----------------------------------+ | FTP: 192.168.13.2 | <-> | NAT: 192.168.13.3, 192.168.100.1 | +-------------------+ +----------------------------------+ | +-----------------------+ | Client: 192.168.100.2 | +-----------------------+ ftp nat changes do not work as expected in this case: Connected to 192.168.100.1. [..] ftp> epsv EPSV/EPRT on IPv4 off. ftp> ls 227 Entering passive mode (192,168,100,1,209,129). 421 Service not available, remote server has closed connection. Kernel logs: Missing nfct_seqadj_ext_add() setup call WARNING: CPU: 1 PID: 0 at net/netfilter/nf_conntrack_seqadj.c:41 [..] __nf_nat_mangle_tcp_packet+0x100/0x160 [nf_nat] nf_nat_ftp+0x142/0x280 [nf_nat_ftp] help+0x4d1/0x880 [nf_conntrack_ftp] nf_confirm+0x122/0x2e0 [nf_conntrack] nf_hook_slow+0x3c/0xb0 .. Fix this by adding the required extension when a conntrack helper is assigned to a connection that has a nat binding.
CVE-2025-68208 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bpf: account for current allocated stack depth in widen_imprecise_scalars() The usage pattern for widen_imprecise_scalars() looks as follows: prev_st = find_prev_entry(env, ...); queued_st = push_stack(...); widen_imprecise_scalars(env, prev_st, queued_st); Where prev_st is an ancestor of the queued_st in the explored states tree. This ancestor is not guaranteed to have same allocated stack depth as queued_st. E.g. in the following case: def main(): for i in 1..2: foo(i) // same callsite, differnt param def foo(i): if i == 1: use 128 bytes of stack iterator based loop Here, for a second 'foo' call prev_st->allocated_stack is 128, while queued_st->allocated_stack is much smaller. widen_imprecise_scalars() needs to take this into account and avoid accessing bpf_verifier_state->frame[*]->stack out of bounds.
CVE-2025-68209 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mlx5: Fix default values in create CQ Currently, CQs without a completion function are assigned the mlx5_add_cq_to_tasklet function by default. This is problematic since only user CQs created through the mlx5_ib driver are intended to use this function. Additionally, all CQs that will use doorbells instead of polling for completions must call mlx5_cq_arm. However, the default CQ creation flow leaves a valid value in the CQ's arm_db field, allowing FW to send interrupts to polling-only CQs in certain corner cases. These two factors would allow a polling-only kernel CQ to be triggered by an EQ interrupt and call a completion function intended only for user CQs, causing a null pointer exception. Some areas in the driver have prevented this issue with one-off fixes but did not address the root cause. This patch fixes the described issue by adding defaults to the create CQ flow. It adds a default dummy completion function to protect against null pointer exceptions, and it sets an invalid command sequence number by default in kernel CQs to prevent the FW from sending an interrupt to the CQ until it is armed. User CQs are responsible for their own initialization values. Callers of mlx5_core_create_cq are responsible for changing the completion function and arming the CQ per their needs.
CVE-2025-68211 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ksm: use range-walk function to jump over holes in scan_get_next_rmap_item Currently, scan_get_next_rmap_item() walks every page address in a VMA to locate mergeable pages. This becomes highly inefficient when scanning large virtual memory areas that contain mostly unmapped regions, causing ksmd to use large amount of cpu without deduplicating much pages. This patch replaces the per-address lookup with a range walk using walk_page_range(). The range walker allows KSM to skip over entire unmapped holes in a VMA, avoiding unnecessary lookups. This problem was previously discussed in [1]. Consider the following test program which creates a 32 TiB mapping in the virtual address space but only populates a single page: #include <unistd.h> #include <stdio.h> #include <sys/mman.h> /* 32 TiB */ const size_t size = 32ul * 1024 * 1024 * 1024 * 1024; int main() { char *area = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_NORESERVE | MAP_PRIVATE | MAP_ANON, -1, 0); if (area == MAP_FAILED) { perror("mmap() failed\n"); return -1; } /* Populate a single page such that we get an anon_vma. */ *area = 0; /* Enable KSM. */ madvise(area, size, MADV_MERGEABLE); pause(); return 0; } $ ./ksm-sparse & $ echo 1 > /sys/kernel/mm/ksm/run Without this patch ksmd uses 100% of the cpu for a long time (more then 1 hour in my test machine) scanning all the 32 TiB virtual address space that contain only one mapped page. This makes ksmd essentially deadlocked not able to deduplicate anything of value. With this patch ksmd walks only the one mapped page and skips the rest of the 32 TiB virtual address space, making the scan fast using little cpu.