Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16843 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40160 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xen/events: Return -EEXIST for bound VIRQs Change find_virq() to return -EEXIST when a VIRQ is bound to a different CPU than the one passed in. With that, remove the BUG_ON() from bind_virq_to_irq() to propogate the error upwards. Some VIRQs are per-cpu, but others are per-domain or global. Those must be bound to CPU0 and can then migrate elsewhere. The lookup for per-domain and global will probably fail when migrated off CPU 0, especially when the current CPU is tracked. This now returns -EEXIST instead of BUG_ON(). A second call to bind a per-domain or global VIRQ is not expected, but make it non-fatal to avoid trying to look up the irq, since we don't know which per_cpu(virq_to_irq) it will be in.
CVE-2025-40107 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: hi311x: fix null pointer dereference when resuming from sleep before interface was enabled This issue is similar to the vulnerability in the `mcp251x` driver, which was fixed in commit 03c427147b2d ("can: mcp251x: fix resume from sleep before interface was brought up"). In the `hi311x` driver, when the device resumes from sleep, the driver schedules `priv->restart_work`. However, if the network interface was not previously enabled, the `priv->wq` (workqueue) is not allocated and initialized, leading to a null pointer dereference. To fix this, we move the allocation and initialization of the workqueue from the `hi3110_open` function to the `hi3110_can_probe` function. This ensures that the workqueue is properly initialized before it is used during device resume. And added logic to destroy the workqueue in the error handling paths of `hi3110_can_probe` and in the `hi3110_can_remove` function to prevent resource leaks.
CVE-2025-40106 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: fix divide-by-zero in comedi_buf_munge() The comedi_buf_munge() function performs a modulo operation `async->munge_chan %= async->cmd.chanlist_len` without first checking if chanlist_len is zero. If a user program submits a command with chanlist_len set to zero, this causes a divide-by-zero error when the device processes data in the interrupt handler path. Add a check for zero chanlist_len at the beginning of the function, similar to the existing checks for !map and CMDF_RAWDATA flag. When chanlist_len is zero, update munge_count and return early, indicating the data was handled without munging. This prevents potential kernel panics from malformed user commands.
CVE-2025-40099 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: parse_dfs_referrals: prevent oob on malformed input Malicious SMB server can send invalid reply to FSCTL_DFS_GET_REFERRALS - reply smaller than sizeof(struct get_dfs_referral_rsp) - reply with number of referrals smaller than NumberOfReferrals in the header Processing of such replies will cause oob. Return -EINVAL error on such replies to prevent oob-s.
CVE-2025-40088 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_strcasecmp() The hfsplus_strcasecmp() logic can trigger the issue: [ 117.317703][ T9855] ================================================================== [ 117.318353][ T9855] BUG: KASAN: slab-out-of-bounds in hfsplus_strcasecmp+0x1bc/0x490 [ 117.318991][ T9855] Read of size 2 at addr ffff88802160f40c by task repro/9855 [ 117.319577][ T9855] [ 117.319773][ T9855] CPU: 0 UID: 0 PID: 9855 Comm: repro Not tainted 6.17.0-rc6 #33 PREEMPT(full) [ 117.319780][ T9855] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 117.319783][ T9855] Call Trace: [ 117.319785][ T9855] <TASK> [ 117.319788][ T9855] dump_stack_lvl+0x1c1/0x2a0 [ 117.319795][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319803][ T9855] ? __pfx_dump_stack_lvl+0x10/0x10 [ 117.319808][ T9855] ? rcu_is_watching+0x15/0xb0 [ 117.319816][ T9855] ? lock_release+0x4b/0x3e0 [ 117.319821][ T9855] ? __kasan_check_byte+0x12/0x40 [ 117.319828][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319835][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319842][ T9855] print_report+0x17e/0x7e0 [ 117.319848][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319855][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319862][ T9855] ? __phys_addr+0xd3/0x180 [ 117.319869][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319876][ T9855] kasan_report+0x147/0x180 [ 117.319882][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319891][ T9855] hfsplus_strcasecmp+0x1bc/0x490 [ 117.319900][ T9855] ? __pfx_hfsplus_cat_case_cmp_key+0x10/0x10 [ 117.319906][ T9855] hfs_find_rec_by_key+0xa9/0x1e0 [ 117.319913][ T9855] __hfsplus_brec_find+0x18e/0x470 [ 117.319920][ T9855] ? __pfx_hfsplus_bnode_find+0x10/0x10 [ 117.319926][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319933][ T9855] ? __pfx___hfsplus_brec_find+0x10/0x10 [ 117.319942][ T9855] hfsplus_brec_find+0x28f/0x510 [ 117.319949][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319956][ T9855] ? __pfx_hfsplus_brec_find+0x10/0x10 [ 117.319963][ T9855] ? __kmalloc_noprof+0x2a9/0x510 [ 117.319969][ T9855] ? hfsplus_find_init+0x8c/0x1d0 [ 117.319976][ T9855] hfsplus_brec_read+0x2b/0x120 [ 117.319983][ T9855] hfsplus_lookup+0x2aa/0x890 [ 117.319990][ T9855] ? __pfx_hfsplus_lookup+0x10/0x10 [ 117.320003][ T9855] ? d_alloc_parallel+0x2f0/0x15e0 [ 117.320008][ T9855] ? __lock_acquire+0xaec/0xd80 [ 117.320013][ T9855] ? __pfx_d_alloc_parallel+0x10/0x10 [ 117.320019][ T9855] ? __raw_spin_lock_init+0x45/0x100 [ 117.320026][ T9855] ? __init_waitqueue_head+0xa9/0x150 [ 117.320034][ T9855] __lookup_slow+0x297/0x3d0 [ 117.320039][ T9855] ? __pfx___lookup_slow+0x10/0x10 [ 117.320045][ T9855] ? down_read+0x1ad/0x2e0 [ 117.320055][ T9855] lookup_slow+0x53/0x70 [ 117.320065][ T9855] walk_component+0x2f0/0x430 [ 117.320073][ T9855] path_lookupat+0x169/0x440 [ 117.320081][ T9855] filename_lookup+0x212/0x590 [ 117.320089][ T9855] ? __pfx_filename_lookup+0x10/0x10 [ 117.320098][ T9855] ? strncpy_from_user+0x150/0x290 [ 117.320105][ T9855] ? getname_flags+0x1e5/0x540 [ 117.320112][ T9855] user_path_at+0x3a/0x60 [ 117.320117][ T9855] __x64_sys_umount+0xee/0x160 [ 117.320123][ T9855] ? __pfx___x64_sys_umount+0x10/0x10 [ 117.320129][ T9855] ? do_syscall_64+0xb7/0x3a0 [ 117.320135][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320141][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320145][ T9855] do_syscall_64+0xf3/0x3a0 [ 117.320150][ T9855] ? exc_page_fault+0x9f/0xf0 [ 117.320154][ T9855] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320158][ T9855] RIP: 0033:0x7f7dd7908b07 [ 117.320163][ T9855] Code: 23 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 31 f6 e9 09 00 00 00 66 0f 1f 84 00 00 08 [ 117.320167][ T9855] RSP: 002b:00007ffd5ebd9698 EFLAGS: 00000202 ---truncated---
CVE-2025-40083 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix null-deref in agg_dequeue To prevent a potential crash in agg_dequeue (net/sched/sch_qfq.c) when cl->qdisc->ops->peek(cl->qdisc) returns NULL, we check the return value before using it, similar to the existing approach in sch_hfsc.c. To avoid code duplication, the following changes are made: 1. Changed qdisc_warn_nonwc(include/net/pkt_sched.h) into a static inline function. 2. Moved qdisc_peek_len from net/sched/sch_hfsc.c to include/net/pkt_sched.h so that sch_qfq can reuse it. 3. Applied qdisc_peek_len in agg_dequeue to avoid crashing.
CVE-2025-40030 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pinctrl: check the return value of pinmux_ops::get_function_name() While the API contract in docs doesn't specify it explicitly, the generic implementation of the get_function_name() callback from struct pinmux_ops - pinmux_generic_get_function_name() - can fail and return NULL. This is already checked in pinmux_check_ops() so add a similar check in pinmux_func_name_to_selector() instead of passing the returned pointer right down to strcmp() where the NULL can get dereferenced. This is normal operation when adding new pinfunctions.
CVE-2025-40005 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: cadence-quadspi: Implement refcount to handle unbind during busy driver support indirect read and indirect write operation with assumption no force device removal(unbind) operation. However force device removal(removal) is still available to root superuser. Unbinding driver during operation causes kernel crash. This changes ensure driver able to handle such operation for indirect read and indirect write by implementing refcount to track attached devices to the controller and gracefully wait and until attached devices remove operation completed before proceed with removal operation.
CVE-2025-39998 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: target_core_configfs: Add length check to avoid buffer overflow A buffer overflow arises from the usage of snprintf to write into the buffer "buf" in target_lu_gp_members_show function located in /drivers/target/target_core_configfs.c. This buffer is allocated with size LU_GROUP_NAME_BUF (256 bytes). snprintf(...) formats multiple strings into buf with the HBA name (hba->hba_group.cg_item), a slash character, a devicename (dev-> dev_group.cg_item) and a newline character, the total formatted string length may exceed the buffer size of 256 bytes. Since snprintf() returns the total number of bytes that would have been written (the length of %s/%sn ), this value may exceed the buffer length (256 bytes) passed to memcpy(), this will ultimately cause function memcpy reporting a buffer overflow error. An additional check of the return value of snprintf() can avoid this buffer overflow.
CVE-2025-39990 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Check the helper function is valid in get_helper_proto kernel test robot reported verifier bug [1] where the helper func pointer could be NULL due to disabled config option. As Alexei suggested we could check on that in get_helper_proto directly. Marking tail_call helper func with BPF_PTR_POISON, because it is unused by design. [1] https://lore.kernel.org/oe-lkp/202507160818.68358831-lkp@intel.com
CVE-2025-39797 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Duplicate SPI Handling The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI Netlink message, which triggers the kernel function xfrm_alloc_spi(). This function is expected to ensure uniqueness of the Security Parameter Index (SPI) for inbound Security Associations (SAs). However, it can return success even when the requested SPI is already in use, leading to duplicate SPIs assigned to multiple inbound SAs, differentiated only by their destination addresses. This behavior causes inconsistencies during SPI lookups for inbound packets. Since the lookup may return an arbitrary SA among those with the same SPI, packet processing can fail, resulting in packet drops. According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA is uniquely identified by the SPI and optionally protocol. Reproducing the Issue Reliably: To consistently reproduce the problem, restrict the available SPI range in charon.conf : spi_min = 0x10000000 spi_max = 0x10000002 This limits the system to only 2 usable SPI values. Next, create more than 2 Child SA. each using unique pair of src/dst address. As soon as the 3rd Child SA is initiated, it will be assigned a duplicate SPI, since the SPI pool is already exhausted. With a narrow SPI range, the issue is consistently reproducible. With a broader/default range, it becomes rare and unpredictable. Current implementation: xfrm_spi_hash() lookup function computes hash using daddr, proto, and family. So if two SAs have the same SPI but different destination addresses, then they will: a. Hash into different buckets b. Be stored in different linked lists (byspi + h) c. Not be seen in the same hlist_for_each_entry_rcu() iteration. As a result, the lookup will result in NULL and kernel allows that Duplicate SPI Proposed Change: xfrm_state_lookup_spi_proto() does a truly global search - across all states, regardless of hash bucket and matches SPI and proto.
CVE-2025-39781 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Drop WARN_ON_ONCE() from flush_cache_vmap I have observed warning to occassionally trigger.
CVE-2025-39763 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered If a synchronous error is detected as a result of user-space process triggering a 2-bit uncorrected error, the CPU will take a synchronous error exception such as Synchronous External Abort (SEA) on Arm64. The kernel will queue a memory_failure() work which poisons the related page, unmaps the page, and then sends a SIGBUS to the process, so that a system wide panic can be avoided. However, no memory_failure() work will be queued when abnormal synchronous errors occur. These errors can include situations like invalid PA, unexpected severity, no memory failure config support, invalid GUID section, etc. In such a case, the user-space process will trigger SEA again. This loop can potentially exceed the platform firmware threshold or even trigger a kernel hard lockup, leading to a system reboot. Fix it by performing a force kill if no memory_failure() work is queued for synchronous errors. [ rjw: Changelog edits ]
CVE-2025-39748 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Forget ranges when refining tnum after JSET Syzbot reported a kernel warning due to a range invariant violation on the following BPF program. 0: call bpf_get_netns_cookie 1: if r0 == 0 goto <exit> 2: if r0 & Oxffffffff goto <exit> The issue is on the path where we fall through both jumps. That path is unreachable at runtime: after insn 1, we know r0 != 0, but with the sign extension on the jset, we would only fallthrough insn 2 if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to figure this out, so the verifier walks all branches. The verifier then refines the register bounds using the second condition and we end up with inconsistent bounds on this unreachable path: 1: if r0 == 0 goto <exit> r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff) 2: if r0 & 0xffffffff goto <exit> r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0) r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0) Improving the range refinement for JSET to cover all cases is tricky. We also don't expect many users to rely on JSET given LLVM doesn't generate those instructions. So instead of improving the range refinement for JSETs, Eduard suggested we forget the ranges whenever we're narrowing tnums after a JSET. This patch implements that approach.
CVE-2025-39745 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture tests resulted in the following splat: [ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0 [ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture] [ 68.797601] Call Trace: [ 68.797602] <TASK> [ 68.797619] ? lockdep_softirqs_off+0xa5/0x160 [ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797646] ? local_clock+0x19/0x40 [ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797815] rcu-torture: rcu_torture_reader task started [ 68.797824] rcu-torture: Creating rcu_torture_reader task [ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797836] ? kvm_sched_clock_read+0x15/0x30 Disable BH does not change the SOFTIRQ corresponding bits in preempt_count() for RT kernels, this commit therefore use softirq_count() to check the if BH is disabled.
CVE-2025-39744 1 Linux 1 Linux Kernel 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: rcu: Fix rcu_read_unlock() deadloop due to IRQ work During rcu_read_unlock_special(), if this happens during irq_exit(), we can lockup if an IPI is issued. This is because the IPI itself triggers the irq_exit() path causing a recursive lock up. This is precisely what Xiongfeng found when invoking a BPF program on the trace_tick_stop() tracepoint As shown in the trace below. Fix by managing the irq_work state correctly. irq_exit() __irq_exit_rcu() /* in_hardirq() returns false after this */ preempt_count_sub(HARDIRQ_OFFSET) tick_irq_exit() tick_nohz_irq_exit() tick_nohz_stop_sched_tick() trace_tick_stop() /* a bpf prog is hooked on this trace point */ __bpf_trace_tick_stop() bpf_trace_run2() rcu_read_unlock_special() /* will send a IPI to itself */ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); A simple reproducer can also be obtained by doing the following in tick_irq_exit(). It will hang on boot without the patch: static inline void tick_irq_exit(void) { + rcu_read_lock(); + WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); + rcu_read_unlock(); + [neeraj: Apply Frederic's suggested fix for PREEMPT_RT]
CVE-2025-38716 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfs: fix general protection fault in hfs_find_init() The hfs_find_init() method can trigger the crash if tree pointer is NULL: [ 45.746290][ T9787] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000008: 0000 [#1] SMP KAI [ 45.747287][ T9787] KASAN: null-ptr-deref in range [0x0000000000000040-0x0000000000000047] [ 45.748716][ T9787] CPU: 2 UID: 0 PID: 9787 Comm: repro Not tainted 6.16.0-rc3 #10 PREEMPT(full) [ 45.750250][ T9787] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 45.751983][ T9787] RIP: 0010:hfs_find_init+0x86/0x230 [ 45.752834][ T9787] Code: c1 ea 03 80 3c 02 00 0f 85 9a 01 00 00 4c 8d 6b 40 48 c7 45 18 00 00 00 00 48 b8 00 00 00 00 00 fc [ 45.755574][ T9787] RSP: 0018:ffffc90015157668 EFLAGS: 00010202 [ 45.756432][ T9787] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff819a4d09 [ 45.757457][ T9787] RDX: 0000000000000008 RSI: ffffffff819acd3a RDI: ffffc900151576e8 [ 45.758282][ T9787] RBP: ffffc900151576d0 R08: 0000000000000005 R09: 0000000000000000 [ 45.758943][ T9787] R10: 0000000080000000 R11: 0000000000000001 R12: 0000000000000004 [ 45.759619][ T9787] R13: 0000000000000040 R14: ffff88802c50814a R15: 0000000000000000 [ 45.760293][ T9787] FS: 00007ffb72734540(0000) GS:ffff8880cec64000(0000) knlGS:0000000000000000 [ 45.761050][ T9787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 45.761606][ T9787] CR2: 00007f9bd8225000 CR3: 000000010979a000 CR4: 00000000000006f0 [ 45.762286][ T9787] Call Trace: [ 45.762570][ T9787] <TASK> [ 45.762824][ T9787] hfs_ext_read_extent+0x190/0x9d0 [ 45.763269][ T9787] ? submit_bio_noacct_nocheck+0x2dd/0xce0 [ 45.763766][ T9787] ? __pfx_hfs_ext_read_extent+0x10/0x10 [ 45.764250][ T9787] hfs_get_block+0x55f/0x830 [ 45.764646][ T9787] block_read_full_folio+0x36d/0x850 [ 45.765105][ T9787] ? __pfx_hfs_get_block+0x10/0x10 [ 45.765541][ T9787] ? const_folio_flags+0x5b/0x100 [ 45.765972][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.766415][ T9787] filemap_read_folio+0xbe/0x290 [ 45.766840][ T9787] ? __pfx_filemap_read_folio+0x10/0x10 [ 45.767325][ T9787] ? __filemap_get_folio+0x32b/0xbf0 [ 45.767780][ T9787] do_read_cache_folio+0x263/0x5c0 [ 45.768223][ T9787] ? __pfx_hfs_read_folio+0x10/0x10 [ 45.768666][ T9787] read_cache_page+0x5b/0x160 [ 45.769070][ T9787] hfs_btree_open+0x491/0x1740 [ 45.769481][ T9787] hfs_mdb_get+0x15e2/0x1fb0 [ 45.769877][ T9787] ? __pfx_hfs_mdb_get+0x10/0x10 [ 45.770316][ T9787] ? find_held_lock+0x2b/0x80 [ 45.770731][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771200][ T9787] ? lockdep_init_map_type+0x5c/0x280 [ 45.771674][ T9787] hfs_fill_super+0x38e/0x720 [ 45.772092][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.772549][ T9787] ? snprintf+0xbe/0x100 [ 45.772931][ T9787] ? __pfx_snprintf+0x10/0x10 [ 45.773350][ T9787] ? do_raw_spin_lock+0x129/0x2b0 [ 45.773796][ T9787] ? find_held_lock+0x2b/0x80 [ 45.774215][ T9787] ? set_blocksize+0x40a/0x510 [ 45.774636][ T9787] ? sb_set_blocksize+0x176/0x1d0 [ 45.775087][ T9787] ? setup_bdev_super+0x369/0x730 [ 45.775533][ T9787] get_tree_bdev_flags+0x384/0x620 [ 45.775985][ T9787] ? __pfx_hfs_fill_super+0x10/0x10 [ 45.776453][ T9787] ? __pfx_get_tree_bdev_flags+0x10/0x10 [ 45.776950][ T9787] ? bpf_lsm_capable+0x9/0x10 [ 45.777365][ T9787] ? security_capable+0x80/0x260 [ 45.777803][ T9787] vfs_get_tree+0x8e/0x340 [ 45.778203][ T9787] path_mount+0x13de/0x2010 [ 45.778604][ T9787] ? kmem_cache_free+0x2b0/0x4c0 [ 45.779052][ T9787] ? __pfx_path_mount+0x10/0x10 [ 45.779480][ T9787] ? getname_flags.part.0+0x1c5/0x550 [ 45.779954][ T9787] ? putname+0x154/0x1a0 [ 45.780335][ T9787] __x64_sys_mount+0x27b/0x300 [ 45.780758][ T9787] ? __pfx___x64_sys_mount+0x10/0x10 [ 45.781232][ T9787] ---truncated---
CVE-2025-38710 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Validate i_depth for exhash directories A fuzzer test introduced corruption that ends up with a depth of 0 in dir_e_read(), causing an undefined shift by 32 at: index = hash >> (32 - dip->i_depth); As calculated in an open-coded way in dir_make_exhash(), the minimum depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time. So we can avoid the undefined behaviour by checking for depth values lower than the minimum in gfs2_dinode_in(). Values greater than the maximum are already being checked for there. Also switch the calculation in dir_make_exhash() to use ilog2() to clarify how the depth is calculated. Tested with the syzkaller repro.c and xfstests '-g quick'.
CVE-2025-38709 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: loop: Avoid updating block size under exclusive owner Syzbot came up with a reproducer where a loop device block size is changed underneath a mounted filesystem. This causes a mismatch between the block device block size and the block size stored in the superblock causing confusion in various places such as fs/buffer.c. The particular issue triggered by syzbot was a warning in __getblk_slow() due to requested buffer size not matching block device block size. Fix the problem by getting exclusive hold of the loop device to change its block size. This fails if somebody (such as filesystem) has already an exclusive ownership of the block device and thus prevents modifying the loop device under some exclusive owner which doesn't expect it.
CVE-2025-38705 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: fix null pointer access Writing a string without delimiters (' ', '\n', '\0') to the under gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile will result in a null pointer dereference.