Filtered by CWE-787
Total 12391 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-43244 2 Debian, Struktur 2 Debian Linux, Libde265 2025-05-05 6.5 Medium
Libde265 v1.0.8 was discovered to contain a heap-buffer-overflow vulnerability via put_qpel_fallback<unsigned short> in fallback-motion.cc. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted video file.
CVE-2022-43243 2 Debian, Struktur 2 Debian Linux, Libde265 2025-05-05 6.5 Medium
Libde265 v1.0.8 was discovered to contain a heap-buffer-overflow vulnerability via ff_hevc_put_weighted_pred_avg_8_sse in sse-motion.cc. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted video file.
CVE-2022-43242 2 Debian, Struktur 2 Debian Linux, Libde265 2025-05-05 6.5 Medium
Libde265 v1.0.8 was discovered to contain a heap-buffer-overflow vulnerability via mc_luma<unsigned char> in motion.cc. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted video file.
CVE-2022-43239 2 Debian, Struktur 2 Debian Linux, Libde265 2025-05-05 6.5 Medium
Libde265 v1.0.8 was discovered to contain a heap-buffer-overflow vulnerability via mc_chroma<unsigned short> in motion.cc. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted video file.
CVE-2024-21591 1 Juniper 1 Junos 2025-05-05 9.8 Critical
An Out-of-bounds Write vulnerability in J-Web of Juniper Networks Junos OS on SRX Series and EX Series allows an unauthenticated, network-based attacker to cause a Denial of Service (DoS), or Remote Code Execution (RCE) and obtain root privileges on the device. This issue is caused by use of an insecure function allowing an attacker to overwrite arbitrary memory. This issue affects Juniper Networks Junos OS SRX Series and EX Series: * Junos OS versions earlier than 20.4R3-S9; * Junos OS 21.2 versions earlier than 21.2R3-S7; * Junos OS 21.3 versions earlier than 21.3R3-S5; * Junos OS 21.4 versions earlier than 21.4R3-S5; * Junos OS 22.1 versions earlier than 22.1R3-S4; * Junos OS 22.2 versions earlier than 22.2R3-S3; * Junos OS 22.3 versions earlier than 22.3R3-S2; * Junos OS 22.4 versions earlier than 22.4R2-S2, 22.4R3.
CVE-2022-24942 1 Silabs 1 Micrium Uc-http 2025-05-05 9.1 Critical
Heap based buffer overflow in HTTP Server functionality in Micrium uC-HTTP 3.01.01 allows remote code execution via HTTP request.
CVE-2022-43108 1 Tenda 2 Ac23, Ac23 Firmware 2025-05-05 9.8 Critical
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the firewallEn parameter in the formSetFirewallCfg function.
CVE-2022-43105 1 Tenda 2 Ac23, Ac23 Firmware 2025-05-05 9.8 Critical
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the shareSpeed parameter in the fromSetWifiGusetBasic function.
CVE-2022-43104 1 Tenda 2 Ac23, Ac23 Firmware 2025-05-05 9.8 Critical
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the wpapsk_crypto parameter in the fromSetWirelessRepeat function.
CVE-2022-43103 1 Tenda 2 Ac23, Ac23 Firmware 2025-05-05 9.8 Critical
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the list parameter in the formSetQosBand function.
CVE-2022-43102 1 Tenda 2 Ac23, Ac23 Firmware 2025-05-05 9.8 Critical
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the timeZone parameter in the fromSetSysTime function.
CVE-2025-21991 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with CONFIG_UBSAN_BOUNDS=y on an AMD machine that flashes a microcode update. I get the following splat: UBSAN: array-index-out-of-bounds in arch/x86/kernel/cpu/microcode/amd.c:X:Y index 512 is out of range for type 'unsigned long[512]' [...] Call Trace: dump_stack __ubsan_handle_out_of_bounds load_microcode_amd request_microcode_amd reload_store kernfs_fop_write_iter vfs_write ksys_write do_syscall_64 entry_SYSCALL_64_after_hwframe Change the loop to go over only NUMA nodes which have CPUs before determining whether the first CPU on the respective node needs microcode update. [ bp: Massage commit message, fix typo. ]
CVE-2025-21650 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs 1024-1279 are in different BAR space addresses. However, hclge_fetch_pf_reg does not distinguish the tqp space information when reading the tqp space information. When the number of TQPs is greater than 1024, access bar space overwriting occurs. The problem of different segments has been considered during the initialization of tqp.io_base. Therefore, tqp.io_base is directly used when the queue is read in hclge_fetch_pf_reg. The error message: Unable to handle kernel paging request at virtual address ffff800037200000 pc : hclge_fetch_pf_reg+0x138/0x250 [hclge] lr : hclge_get_regs+0x84/0x1d0 [hclge] Call trace: hclge_fetch_pf_reg+0x138/0x250 [hclge] hclge_get_regs+0x84/0x1d0 [hclge] hns3_get_regs+0x2c/0x50 [hns3] ethtool_get_regs+0xf4/0x270 dev_ethtool+0x674/0x8a0 dev_ioctl+0x270/0x36c sock_do_ioctl+0x110/0x2a0 sock_ioctl+0x2ac/0x530 __arm64_sys_ioctl+0xa8/0x100 invoke_syscall+0x4c/0x124 el0_svc_common.constprop.0+0x140/0x15c do_el0_svc+0x30/0xd0 el0_svc+0x1c/0x2c el0_sync_handler+0xb0/0xb4 el0_sync+0x168/0x180
CVE-2024-56548 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: don't query the device logical block size multiple times Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE. While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size. Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized. Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096. The produced KASAN report before the fix looks like this: [ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace: [ 419.950384] <TASK> [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? __virt_addr_valid+0x267/0x278 [ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d [ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.954231] kasan_report+0x89/0xb0 [ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.955367] hfsplus_read_wrapper+0x659/0xa0a [ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10 [ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9 [ 419.957214] ? _raw_spin_unlock+0x1a/0x2e [ 419.957772] hfsplus_fill_super+0x348/0x1590 [ 419.958355] ? hlock_class+0x4c/0x109 [ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.959499] ? __pfx_string+0x10/0x10 [ 419.960006] ? lock_acquire+0x3e2/0x454 [ 419.960532] ? bdev_name.constprop.0+0xce/0x243 [ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10 [ 419.961799] ? pointer+0x3f0/0x62f [ 419.962277] ? __pfx_pointer+0x10/0x10 [ 419.962761] ? vsnprintf+0x6c4/0xfba [ 419.963178] ? __pfx_vsnprintf+0x10/0x10 [ 419.963621] ? setup_bdev_super+0x376/0x3b3 [ 419.964029] ? snprintf+0x9d/0xd2 [ 419.964344] ? __pfx_snprintf+0x10/0x10 [ 419.964675] ? lock_acquired+0x45c/0x5e9 [ 419.965016] ? set_blocksize+0x139/0x1c1 [ 419.965381] ? sb_set_blocksize+0x6d/0xae [ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.966179] mount_bdev+0x12f/0x1bf [ 419.966512] ? __pfx_mount_bdev+0x10/0x10 [ 419.966886] ? vfs_parse_fs_string+0xce/0x111 [ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10 [ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10 [ 419.968073] legacy_get_tree+0x104/0x178 [ 419.968414] vfs_get_tree+0x86/0x296 [ 419.968751] path_mount+0xba3/0xd0b [ 419.969157] ? __pfx_path_mount+0x10/0x10 [ 419.969594] ? kmem_cache_free+0x1e2/0x260 [ 419.970311] do_mount+0x99/0xe0 [ 419.970630] ? __pfx_do_mount+0x10/0x10 [ 419.971008] __do_sys_mount+0x199/0x1c9 [ 419.971397] do_syscall_64+0xd0/0x135 [ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 419.972233] RIP: 0033:0x7c3cb812972e [ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48 [ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5 [ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e [ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI: ---truncated---
CVE-2024-50206 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk_eth_soc: fix memory corruption during fq dma init The loop responsible for allocating up to MTK_FQ_DMA_LENGTH buffers must only touch as many descriptors, otherwise it ends up corrupting unrelated memory. Fix the loop iteration count accordingly.
CVE-2024-50203 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
CVE-2024-36883 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-05-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix out-of-bounds access in ops_init net_alloc_generic is called by net_alloc, which is called without any locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It is read twice, first to allocate an array, then to set s.len, which is later used to limit the bounds of the array access. It is possible that the array is allocated and another thread is registering a new pernet ops, increments max_gen_ptrs, which is then used to set s.len with a larger than allocated length for the variable array. Fix it by reading max_gen_ptrs only once in net_alloc_generic. If max_gen_ptrs is later incremented, it will be caught in net_assign_generic.
CVE-2024-26807 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Both cadence-quadspi ->runtime_suspend() and ->runtime_resume() implementations start with: struct cqspi_st *cqspi = dev_get_drvdata(dev); struct spi_controller *host = dev_get_drvdata(dev); This obviously cannot be correct, unless "struct cqspi_st" is the first member of " struct spi_controller", or the other way around, but it is not the case. "struct spi_controller" is allocated by devm_spi_alloc_host(), which allocates an extra amount of memory for private data, used to store "struct cqspi_st". The ->probe() function of the cadence-quadspi driver then sets the device drvdata to store the address of the "struct cqspi_st" structure. Therefore: struct cqspi_st *cqspi = dev_get_drvdata(dev); is correct, but: struct spi_controller *host = dev_get_drvdata(dev); is not, as it makes "host" point not to a "struct spi_controller" but to the same "struct cqspi_st" structure as above. This obviously leads to bad things (memory corruption, kernel crashes) directly during ->probe(), as ->probe() enables the device using PM runtime, leading the ->runtime_resume() hook being called, which in turns calls spi_controller_resume() with the wrong pointer. This has at least been reported [0] to cause a kernel crash, but the exact behavior will depend on the memory contents. [0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/ This issue potentially affects all platforms that are currently using the cadence-quadspi driver.
CVE-2024-26685 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential bug in end_buffer_async_write According to a syzbot report, end_buffer_async_write(), which handles the completion of block device writes, may detect abnormal condition of the buffer async_write flag and cause a BUG_ON failure when using nilfs2. Nilfs2 itself does not use end_buffer_async_write(). But, the async_write flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue with race condition of competition between segments for dirty blocks") as a means of resolving double list insertion of dirty blocks in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the resulting crash. This modification is safe as long as it is used for file data and b-tree node blocks where the page caches are independent. However, it was irrelevant and redundant to also introduce async_write for segment summary and super root blocks that share buffers with the backing device. This led to the possibility that the BUG_ON check in end_buffer_async_write would fail as described above, if independent writebacks of the backing device occurred in parallel. The use of async_write for segment summary buffers has already been removed in a previous change. Fix this issue by removing the manipulation of the async_write flag for the remaining super root block buffer.
CVE-2024-26670 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't quite right, as it is supposed to be applied after the last explicit memory access, but is immediately followed by an LDR. The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295, which are described in: * https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en * https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en In both cases the workaround is described as: | If pagetable isolation is disabled, the context switch logic in the | kernel can be updated to execute the following sequence on affected | cores before exiting to EL0, and after all explicit memory accesses: | | 1. A non-shareable TLBI to any context and/or address, including | unused contexts or addresses, such as a `TLBI VALE1 Xzr`. | | 2. A DSB NSH to guarantee completion of the TLBI. The important part being that the TLBI+DSB must be placed "after all explicit memory accesses". Unfortunately, as-implemented, the TLBI+DSB is immediately followed by an LDR, as we have: | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0 | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | eret | alternative_else_nop_endif | | [ ... KPTI exception return path ... ] This patch fixes this by reworking the logic to place the TLBI+DSB immediately before the ERET, after all explicit memory accesses. The ERET is currently in a separate alternative block, and alternatives cannot be nested. To account for this, the alternative block for ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch to skip the KPTI logic, with the new shape of the logic being: | alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0 | [ ... KPTI exception return path ... ] | .L_skip_tramp_exit_\@: | | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | eret The new structure means that the workaround is only applied when KPTI is not in use; this is fine as noted in the documented implications of the erratum: | Pagetable isolation between EL0 and higher level ELs prevents the | issue from occurring. ... and as per the workaround description quoted above, the workaround is only necessary "If pagetable isolation is disabled".