Filtered by vendor Linux
Subscriptions
Total
16909 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2026-23081 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: phy: intel-xway: fix OF node refcount leakage Automated review spotted am OF node reference count leakage when checking if the 'leds' child node exists. Call of_put_node() to correctly maintain the refcount. | ||||
| CVE-2026-23050 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: pNFS: Fix a deadlock when returning a delegation during open() Ben Coddington reports seeing a hang in the following stack trace: 0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415 1 [ffffd0b50e177548] schedule at ffffffff9ca05717 2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1 3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb 4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5 5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4] 6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4] 7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4] 8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4] 9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4] 10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4] 11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4] 12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4] 13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4] 14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4] 15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4] 16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4] 17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea 18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e 19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935 The issue is that the delegreturn is being asked to wait for a layout return that cannot complete because a state recovery was initiated. The state recovery cannot complete until the open() finishes processing the delegations it was given. The solution is to propagate the existing flags that indicate a non-blocking call to the function pnfs_roc(), so that it knows not to wait in this situation. | ||||
| CVE-2026-23052 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ftrace: Do not over-allocate ftrace memory The pg_remaining calculation in ftrace_process_locs() assumes that ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE (integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g. 4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages) have significantly more capacity than 256 * 170. This leads to pg_remaining being underestimated, which in turn makes skip (derived from skipped - pg_remaining) larger than expected, causing the WARN(skip != remaining) to trigger. Extra allocated pages for ftrace: 2 with 654 skipped WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0 A similar problem in ftrace_allocate_records() can result in allocating too many pages. This can trigger the second warning in ftrace_process_locs(). Extra allocated pages for ftrace WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580 Use the actual capacity of a page group to determine the number of pages to allocate. Have ftrace_allocate_pages() return the number of allocated pages to avoid having to calculate it. Use the actual page group capacity when validating the number of unused pages due to skipped entries. Drop the definition of ENTRIES_PER_PAGE since it is no longer used. | ||||
| CVE-2026-23053 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: NFS: Fix a deadlock involving nfs_release_folio() Wang Zhaolong reports a deadlock involving NFSv4.1 state recovery waiting on kthreadd, which is attempting to reclaim memory by calling nfs_release_folio(). The latter cannot make progress due to state recovery being needed. It seems that the only safe thing to do here is to kick off a writeback of the folio, without waiting for completion, or else kicking off an asynchronous commit. | ||||
| CVE-2026-23059 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Sanitize payload size to prevent member overflow In qla27xx_copy_fpin_pkt() and qla27xx_copy_multiple_pkt(), the frame_size reported by firmware is used to calculate the copy length into item->iocb. However, the iocb member is defined as a fixed-size 64-byte array within struct purex_item. If the reported frame_size exceeds 64 bytes, subsequent memcpy calls will overflow the iocb member boundary. While extra memory might be allocated, this cross-member write is unsafe and triggers warnings under CONFIG_FORTIFY_SOURCE. Fix this by capping total_bytes to the size of the iocb member (64 bytes) before allocation and copying. This ensures all copies remain within the bounds of the destination structure member. | ||||
| CVE-2026-23062 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix kernel panic in GET_INSTANCE_ID macro The GET_INSTANCE_ID macro that caused a kernel panic when accessing sysfs attributes: 1. Off-by-one error: The loop condition used '<=' instead of '<', causing access beyond array bounds. Since array indices are 0-based and go from 0 to instances_count-1, the loop should use '<'. 2. Missing NULL check: The code dereferenced attr_name_kobj->name without checking if attr_name_kobj was NULL, causing a null pointer dereference in min_length_show() and other attribute show functions. The panic occurred when fwupd tried to read BIOS configuration attributes: Oops: general protection fault [#1] SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:min_length_show+0xcf/0x1d0 [hp_bioscfg] Add a NULL check for attr_name_kobj before dereferencing and corrects the loop boundary to match the pattern used elsewhere in the driver. | ||||
| CVE-2026-23066 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix recvmsg() unconditional requeue If rxrpc_recvmsg() fails because MSG_DONTWAIT was specified but the call at the front of the recvmsg queue already has its mutex locked, it requeues the call - whether or not the call is already queued. The call may be on the queue because MSG_PEEK was also passed and so the call was not dequeued or because the I/O thread requeued it. The unconditional requeue may then corrupt the recvmsg queue, leading to things like UAFs or refcount underruns. Fix this by only requeuing the call if it isn't already on the queue - and moving it to the front if it is already queued. If we don't queue it, we have to put the ref we obtained by dequeuing it. Also, MSG_PEEK doesn't dequeue the call so shouldn't call rxrpc_notify_socket() for the call if we didn't use up all the data on the queue, so fix that also. | ||||
| CVE-2026-23067 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommu/io-pgtable-arm: fix size_t signedness bug in unmap path __arm_lpae_unmap() returns size_t but was returning -ENOENT (negative error code) when encountering an unmapped PTE. Since size_t is unsigned, -ENOENT (typically -2) becomes a huge positive value (0xFFFFFFFFFFFFFFFE on 64-bit systems). This corrupted value propagates through the call chain: __arm_lpae_unmap() returns -ENOENT as size_t -> arm_lpae_unmap_pages() returns it -> __iommu_unmap() adds it to iova address -> iommu_pgsize() triggers BUG_ON due to corrupted iova This can cause IOVA address overflow in __iommu_unmap() loop and trigger BUG_ON in iommu_pgsize() from invalid address alignment. Fix by returning 0 instead of -ENOENT. The WARN_ON already signals the error condition, and returning 0 (meaning "nothing unmapped") is the correct semantic for size_t return type. This matches the behavior of other io-pgtable implementations (io-pgtable-arm-v7s, io-pgtable-dart) which return 0 on error conditions. | ||||
| CVE-2026-23070 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Octeontx2-af: Add proper checks for fwdata firmware populates MAC address, link modes (supported, advertised) and EEPROM data in shared firmware structure which kernel access via MAC block(CGX/RPM). Accessing fwdata, on boards booted with out MAC block leading to kernel panics. Internal error: Oops: 0000000096000005 [#1] SMP [ 10.460721] Modules linked in: [ 10.463779] CPU: 0 UID: 0 PID: 174 Comm: kworker/0:3 Not tainted 6.19.0-rc5-00154-g76ec646abdf7-dirty #3 PREEMPT [ 10.474045] Hardware name: Marvell OcteonTX CN98XX board (DT) [ 10.479793] Workqueue: events work_for_cpu_fn [ 10.484159] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 10.491124] pc : rvu_sdp_init+0x18/0x114 [ 10.495051] lr : rvu_probe+0xe58/0x1d18 | ||||
| CVE-2026-23094 | 1 Linux | 1 Linux Kernel | 2026-02-05 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: uacce: fix isolate sysfs check condition uacce supports the device isolation feature. If the driver implements the isolate_err_threshold_read and isolate_err_threshold_write callback functions, uacce will create sysfs files now. Users can read and configure the isolation policy through sysfs. Currently, sysfs files are created as long as either isolate_err_threshold_read or isolate_err_threshold_write callback functions are present. However, accessing a non-existent callback function may cause the system to crash. Therefore, intercept the creation of sysfs if neither read nor write exists; create sysfs if either is supported, but intercept unsupported operations at the call site. | ||||
| CVE-2026-23100 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix hugetlb_pmd_shared() Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)", v3. One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. Runtime tested, with a focus on fixing the performance regression using the original reproducer [2] on x86. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared(). | ||||
| CVE-2026-23104 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ice: fix devlink reload call trace Commit 4da71a77fc3b ("ice: read internal temperature sensor") introduced internal temperature sensor reading via HWMON. ice_hwmon_init() was added to ice_init_feature() and ice_hwmon_exit() was added to ice_remove(). As a result if devlink reload is used to reinit the device and then the driver is removed, a call trace can occur. BUG: unable to handle page fault for address: ffffffffc0fd4b5d Call Trace: string+0x48/0xe0 vsnprintf+0x1f9/0x650 sprintf+0x62/0x80 name_show+0x1f/0x30 dev_attr_show+0x19/0x60 The call trace repeats approximately every 10 minutes when system monitoring tools (e.g., sadc) attempt to read the orphaned hwmon sysfs attributes that reference freed module memory. The sequence is: 1. Driver load, ice_hwmon_init() gets called from ice_init_feature() 2. Devlink reload down, flow does not call ice_remove() 3. Devlink reload up, ice_hwmon_init() gets called from ice_init_feature() resulting in a second instance 4. Driver unload, ice_hwmon_exit() called from ice_remove() leaving the first hwmon instance orphaned with dangling pointer Fix this by moving ice_hwmon_exit() from ice_remove() to ice_deinit_features() to ensure proper cleanup symmetry with ice_hwmon_init(). | ||||
| CVE-2026-23109 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fs/writeback: skip AS_NO_DATA_INTEGRITY mappings in wait_sb_inodes() Above the while() loop in wait_sb_inodes(), we document that we must wait for all pages under writeback for data integrity. Consequently, if a mapping, like fuse, traditionally does not have data integrity semantics, there is no need to wait at all; we can simply skip these inodes. This restores fuse back to prior behavior where syncs are no-ops. This fixes a user regression where if a system is running a faulty fuse server that does not reply to issued write requests, this causes wait_sb_inodes() to wait forever. | ||||
| CVE-2023-53619 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: Avoid nf_ct_helper_hash uses after free If nf_conntrack_init_start() fails (for example due to a register_nf_conntrack_bpf() failure), the nf_conntrack_helper_fini() clean-up path frees the nf_ct_helper_hash map. When built with NF_CONNTRACK=y, further netfilter modules (e.g: netfilter_conntrack_ftp) can still be loaded and call nf_conntrack_helpers_register(), independently of whether nf_conntrack initialized correctly. This accesses the nf_ct_helper_hash dangling pointer and causes a uaf, possibly leading to random memory corruption. This patch guards nf_conntrack_helper_register() from accessing a freed or uninitialized nf_ct_helper_hash pointer and fixes possible uses-after-free when loading a conntrack module. | ||||
| CVE-2023-53620 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: md: fix soft lockup in status_resync status_resync() will calculate 'curr_resync - recovery_active' to show user a progress bar like following: [============>........] resync = 61.4% 'curr_resync' and 'recovery_active' is updated in md_do_sync(), and status_resync() can read them concurrently, hence it's possible that 'curr_resync - recovery_active' can overflow to a huge number. In this case status_resync() will be stuck in the loop to print a large amount of '=', which will end up soft lockup. Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case, this way resync in progress will be reported to user. | ||||
| CVE-2023-53621 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: memcontrol: ensure memcg acquired by id is properly set up In the eviction recency check, we attempt to retrieve the memcg to which the folio belonged when it was evicted, by the memcg id stored in the shadow entry. However, there is a chance that the retrieved memcg is not the original memcg that has been killed, but a new one which happens to have the same id. This is a somewhat unfortunate, but acceptable and rare inaccuracy in the heuristics. However, if we retrieve this new memcg between its allocation and when it is properly attached to the memcg hierarchy, we could run into the following NULL pointer exception during the memcg hierarchy traversal done in mem_cgroup_get_nr_swap_pages(): [ 155757.793456] BUG: kernel NULL pointer dereference, address: 00000000000000c0 [ 155757.807568] #PF: supervisor read access in kernel mode [ 155757.818024] #PF: error_code(0x0000) - not-present page [ 155757.828482] PGD 401f77067 P4D 401f77067 PUD 401f76067 PMD 0 [ 155757.839985] Oops: 0000 [#1] SMP [ 155757.887870] RIP: 0010:mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155757.899377] Code: 29 19 4a 02 48 39 f9 74 63 48 8b 97 c0 00 00 00 48 8b b7 58 02 00 00 48 2b b7 c0 01 00 00 48 39 f0 48 0f 4d c6 48 39 d1 74 42 <48> 8b b2 c0 00 00 00 48 8b ba 58 02 00 00 48 2b ba c0 01 00 00 48 [ 155757.937125] RSP: 0018:ffffc9002ecdfbc8 EFLAGS: 00010286 [ 155757.947755] RAX: 00000000003a3b1c RBX: 000007ffffffffff RCX: ffff888280183000 [ 155757.962202] RDX: 0000000000000000 RSI: 0007ffffffffffff RDI: ffff888bbc2d1000 [ 155757.976648] RBP: 0000000000000001 R08: 000000000000000b R09: ffff888ad9cedba0 [ 155757.991094] R10: ffffea0039c07900 R11: 0000000000000010 R12: ffff888b23a7b000 [ 155758.005540] R13: 0000000000000000 R14: ffff888bbc2d1000 R15: 000007ffffc71354 [ 155758.019991] FS: 00007f6234c68640(0000) GS:ffff88903f9c0000(0000) knlGS:0000000000000000 [ 155758.036356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 155758.048023] CR2: 00000000000000c0 CR3: 0000000a83eb8004 CR4: 00000000007706e0 [ 155758.062473] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 155758.076924] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 155758.091376] PKRU: 55555554 [ 155758.096957] Call Trace: [ 155758.102016] <TASK> [ 155758.106502] ? __die+0x78/0xc0 [ 155758.112793] ? page_fault_oops+0x286/0x380 [ 155758.121175] ? exc_page_fault+0x5d/0x110 [ 155758.129209] ? asm_exc_page_fault+0x22/0x30 [ 155758.137763] ? mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155758.148060] workingset_test_recent+0xda/0x1b0 [ 155758.157133] workingset_refault+0xca/0x1e0 [ 155758.165508] filemap_add_folio+0x4d/0x70 [ 155758.173538] page_cache_ra_unbounded+0xed/0x190 [ 155758.182919] page_cache_sync_ra+0xd6/0x1e0 [ 155758.191738] filemap_read+0x68d/0xdf0 [ 155758.199495] ? mlx5e_napi_poll+0x123/0x940 [ 155758.207981] ? __napi_schedule+0x55/0x90 [ 155758.216095] __x64_sys_pread64+0x1d6/0x2c0 [ 155758.224601] do_syscall_64+0x3d/0x80 [ 155758.232058] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 155758.242473] RIP: 0033:0x7f62c29153b5 [ 155758.249938] Code: e8 48 89 75 f0 89 7d f8 48 89 4d e0 e8 b4 e6 f7 ff 41 89 c0 4c 8b 55 e0 48 8b 55 e8 48 8b 75 f0 8b 7d f8 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 45 f8 e8 e7 e6 f7 ff 48 8b [ 155758.288005] RSP: 002b:00007f6234c5ffd0 EFLAGS: 00000293 ORIG_RAX: 0000000000000011 [ 155758.303474] RAX: ffffffffffffffda RBX: 00007f628c4e70c0 RCX: 00007f62c29153b5 [ 155758.318075] RDX: 000000000003c041 RSI: 00007f61d2986000 RDI: 0000000000000076 [ 155758.332678] RBP: 00007f6234c5fff0 R08: 0000000000000000 R09: 0000000064d5230c [ 155758.347452] R10: 000000000027d450 R11: 0000000000000293 R12: 000000000003c041 [ 155758.362044] R13: 00007f61d2986000 R14: 00007f629e11b060 R15: 000000000027d450 [ 155758.376661] </TASK> This patch fixes the issue by moving the memcg's id publication from the alloc stage to ---truncated--- | ||||
| CVE-2023-53622 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix possible data races in gfs2_show_options() Some fields such as gt_logd_secs of the struct gfs2_tune are accessed without holding the lock gt_spin in gfs2_show_options(): val = sdp->sd_tune.gt_logd_secs; if (val != 30) seq_printf(s, ",commit=%d", val); And thus can cause data races when gfs2_show_options() and other functions such as gfs2_reconfigure() are concurrently executed: spin_lock(>->gt_spin); gt->gt_logd_secs = newargs->ar_commit; To fix these possible data races, the lock sdp->sd_tune.gt_spin is acquired before accessing the fields of gfs2_tune and released after these accesses. Further changes by Andreas: - Don't hold the spin lock over the seq_printf operations. | ||||
| CVE-2023-53623 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/swap: fix swap_info_struct race between swapoff and get_swap_pages() The si->lock must be held when deleting the si from the available list. Otherwise, another thread can re-add the si to the available list, which can lead to memory corruption. The only place we have found where this happens is in the swapoff path. This case can be described as below: core 0 core 1 swapoff del_from_avail_list(si) waiting try lock si->lock acquire swap_avail_lock and re-add si into swap_avail_head acquire si->lock but missing si already being added again, and continuing to clear SWP_WRITEOK, etc. It can be easily found that a massive warning messages can be triggered inside get_swap_pages() by some special cases, for example, we call madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile, run much swapon-swapoff operations (e.g. stress-ng-swap). However, in the worst case, panic can be caused by the above scene. In swapoff(), the memory used by si could be kept in swap_info[] after turning off a swap. This means memory corruption will not be caused immediately until allocated and reset for a new swap in the swapon path. A panic message caused: (with CONFIG_PLIST_DEBUG enabled) ------------[ cut here ]------------ top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70 Modules linked in: rfkill(E) crct10dif_ce(E)... CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+ Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015 pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--) pc : plist_check_prev_next_node+0x50/0x70 lr : plist_check_prev_next_node+0x50/0x70 sp : ffff0018009d3c30 x29: ffff0018009d3c40 x28: ffff800011b32a98 x27: 0000000000000000 x26: ffff001803908000 x25: ffff8000128ea088 x24: ffff800011b32a48 x23: 0000000000000028 x22: ffff001800875c00 x21: ffff800010f9e520 x20: ffff001800875c00 x19: ffff001800fdc6e0 x18: 0000000000000030 x17: 0000000000000000 x16: 0000000000000000 x15: 0736076307640766 x14: 0730073007380731 x13: 0736076307640766 x12: 0730073007380731 x11: 000000000004058d x10: 0000000085a85b76 x9 : ffff8000101436e4 x8 : ffff800011c8ce08 x7 : 0000000000000000 x6 : 0000000000000001 x5 : ffff0017df9ed338 x4 : 0000000000000001 x3 : ffff8017ce62a000 x2 : ffff0017df9ed340 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: plist_check_prev_next_node+0x50/0x70 plist_check_head+0x80/0xf0 plist_add+0x28/0x140 add_to_avail_list+0x9c/0xf0 _enable_swap_info+0x78/0xb4 __do_sys_swapon+0x918/0xa10 __arm64_sys_swapon+0x20/0x30 el0_svc_common+0x8c/0x220 do_el0_svc+0x2c/0x90 el0_svc+0x1c/0x30 el0_sync_handler+0xa8/0xb0 el0_sync+0x148/0x180 irq event stamp: 2082270 Now, si->lock locked before calling 'del_from_avail_list()' to make sure other thread see the si had been deleted and SWP_WRITEOK cleared together, will not reinsert again. This problem exists in versions after stable 5.10.y. | ||||
| CVE-2023-53624 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_fq: fix integer overflow of "credit" if sch_fq is configured with "initial quantum" having values greater than INT_MAX, the first assignment of "credit" does signed integer overflow to a very negative value. In this situation, the syzkaller script provided by Cristoph triggers the CPU soft-lockup warning even with few sockets. It's not an infinite loop, but "credit" wasn't probably meant to be minus 2Gb for each new flow. Capping "initial quantum" to INT_MAX proved to fix the issue. v2: validation of "initial quantum" is done in fq_policy, instead of open coding in fq_change() _ suggested by Jakub Kicinski | ||||
| CVE-2023-53625 | 1 Linux | 1 Linux Kernel | 2026-02-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix vgpu debugfs clean in remove Check carefully on root debugfs available when destroying vgpu, e.g in remove case drm minor's debugfs root might already be destroyed, which led to kernel oops like below. Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering intel_vgpu_mdev b1338b2d-a709-4c23-b766-cc436c36cdf0: Removing from iommu group 14 BUG: kernel NULL pointer dereference, address: 0000000000000150 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP CPU: 3 PID: 1046 Comm: driverctl Not tainted 6.1.0-rc2+ #6 Hardware name: HP HP ProDesk 600 G3 MT/829D, BIOS P02 Ver. 02.44 09/13/2022 RIP: 0010:__lock_acquire+0x5e2/0x1f90 Code: 87 ad 09 00 00 39 05 e1 1e cc 02 0f 82 f1 09 00 00 ba 01 00 00 00 48 83 c4 48 89 d0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 45 31 ff <48> 81 3f 60 9e c2 b6 45 0f 45 f8 83 fe 01 0f 87 55 fa ff ff 89 f0 RSP: 0018:ffff9f770274f948 EFLAGS: 00010046 RAX: 0000000000000003 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000150 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8895d1173300 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000150 R14: 0000000000000000 R15: 0000000000000000 FS: 00007fc9b2ba0740(0000) GS:ffff889cdfcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000150 CR3: 000000010fd93005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> lock_acquire+0xbf/0x2b0 ? simple_recursive_removal+0xa5/0x2b0 ? lock_release+0x13d/0x2d0 down_write+0x2a/0xd0 ? simple_recursive_removal+0xa5/0x2b0 simple_recursive_removal+0xa5/0x2b0 ? start_creating.part.0+0x110/0x110 ? _raw_spin_unlock+0x29/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_remove_vgpu+0x15/0x30 [kvmgt] intel_gvt_destroy_vgpu+0x60/0x100 [kvmgt] intel_vgpu_release_dev+0xe/0x20 [kvmgt] device_release+0x30/0x80 kobject_put+0x79/0x1b0 device_release_driver_internal+0x1b8/0x230 bus_remove_device+0xec/0x160 device_del+0x189/0x400 ? up_write+0x9c/0x1b0 ? mdev_device_remove_common+0x60/0x60 [mdev] mdev_device_remove_common+0x22/0x60 [mdev] mdev_device_remove_cb+0x17/0x20 [mdev] device_for_each_child+0x56/0x80 mdev_unregister_parent+0x5a/0x81 [mdev] intel_gvt_clean_device+0x2d/0xe0 [kvmgt] intel_gvt_driver_remove+0x2e/0xb0 [i915] i915_driver_remove+0xac/0x100 [i915] i915_pci_remove+0x1a/0x30 [i915] pci_device_remove+0x31/0xa0 device_release_driver_internal+0x1b8/0x230 unbind_store+0xd8/0x100 kernfs_fop_write_iter+0x156/0x210 vfs_write+0x236/0x4a0 ksys_write+0x61/0xd0 do_syscall_64+0x55/0x80 ? find_held_lock+0x2b/0x80 ? lock_release+0x13d/0x2d0 ? up_read+0x17/0x20 ? lock_is_held_type+0xe3/0x140 ? asm_exc_page_fault+0x22/0x30 ? lockdep_hardirqs_on+0x7d/0x100 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fc9b2c9e0c4 Code: 15 71 7d 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 80 3d 3d 05 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 48 89 54 24 18 48 RSP: 002b:00007ffec29c81c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc9b2c9e0c4 RDX: 000000000000000d RSI: 0000559f8b5f48a0 RDI: 0000000000000001 RBP: 0000559f8b5f48a0 R08: 0000559f8b5f3540 R09: 00007fc9b2d76d30 R10: 0000000000000000 R11: 0000000000000202 R12: 000000000000000d R13: 00007fc9b2d77780 R14: 000000000000000d R15: 00007fc9b2d72a00 </TASK> Modules linked in: sunrpc intel_rapl_msr intel_rapl_common intel_pmc_core_pltdrv intel_pmc_core intel_tcc_cooling x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel ee1004 igbvf rapl vfat fat intel_cstate intel_uncore pktcdvd i2c_i801 pcspkr wmi_bmof i2c_smbus acpi_pad vfio_pci vfio_pci_core vfio_virqfd zram fuse dm ---truncated--- | ||||